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NOMENCLATURE

a crack length

ac critical crack length

A area

A, effective surface area based on the PIA model

A, series constant in the anisotropic, plate displacement solution

At total surface area

AF anisotropy factor

b width of a plate

bjj reduced elastic stiffness

B width of a uniaxial flexure (beam) specimen

B, series constant in the anisotropic, plate displacement solution
c free surface half-length of an elliptical crack

C contour for unit circle integration

C; constants in the anisotropic displacement stress solution

Ci elastic stiffness

CV;  coefficient of variation of the i variable

d gage section diameter

D half-width of a composite tensile specimen
Dj; flexural rigidities

D" effective flexural rigidity of an anisotropic plate
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D*cubic

f(6)
Jfa

FC

FC,

kw'ps

effective flexural rigidity of a cubic plate

eccentricity of two cylinders

Young’s modulus

failure criterion written in terms of a unit, uniaxial principal stress
probability density function

arbitrary function used in the displacement solution of an anisotropic plate

applied force
failure criterion
critical value of a failure criterion for a materials resistance to unstable crack propagation

shear modulus

mode / strain energy release rate
critical, mode / strain energy release rate
the ratio of the major to minor axes of an elliptical cavity

step function to account for compressive stresses

scale parameter invariant

reduced flexural rigidity

transverse sensitivity of a strain gage
polyaxial crack density coefficient
average polyaxial crack density coefficient
uniaxial crack density coefficient

average uniaxial crack density coefficient

effective, reduced flexural rigidity of an anisotropic plate
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kP eftective, reduced flexural rigidity of a cubic plate

K; mode / stress intensity factor

K; mode [ fracture toughness

Ky mode /1 stress intensity factor

K mode /11 stress intensity factor

[ length of the edge of a square plate (e.g. a biaxial test specimen)
m Weibull modulus

M, applied moment

N crack density for a volume element

Ny safety factor for the tensile conditions considered

N, safety factor for the compressive conditions considered

N ZI ratio of normal stress to strength averaged about the unit circle

P, probability of a single crack being critical

P4p  Probability of a single crack being in a location and having a particular orientation
P, probability of a crack existing

Pry probability of failure for surface flaws

Pry probability of failure for volume flaws

Pr, probability of failure for flaw population x

q pressure
r radial position in a biaxial disk test specimen

p radius of an anisotropic biaxial disk test specimen
R correlation coefficient for linear regression

NASA/TM—2002-210519 Xviii



R, cross sectional radius of load ring used in ring-on-ring biaxial testing

R, radius of an isotropic plate (e.g. an isotropic biaxial disk test specimen)
R; radius of inner (load) ring of ring-on-ring biaxial test fixture

R, reliability of a component with # cracks

R, radius of outer (support) ring

R, radius of support ring in pressure-on-ring test fixture

S ‘surface for unit sphere volume integration

S; inner span of a four-point flexure test

S, outer span of flexure test

Sij elastic compliance

Sues ultimate strength in compression
Sus  ultimate strength in tension

St ultimate strength in uniaxial flexural

Suzs  ultimate biaxial strength of an isotropic material as determined by pressure-on-ring
loading
Surs e Ultimate biaxial strength of an anisotropic material with cubic symmetry as

determined by pressure-on-ring loading

SD,; standard deviation of the x; variable

t biaxial disk test specimen thickness
T torque

| %4 volume

Vr total volume
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Wo

Y;

Yu

Yoy

plate deflection in the z direction
particular solution for the displacement of an anisotropic plate
height of a uniaxial flexure (beam) specimen

abscissa as measured from the center of a plate or rod

location on surface

ordinate as measured from the center of a plate or rod

distance from mid-surface of the plate ranging over + #/2

mode / stress intensity factor coefficient

mode I] stress intensity factor coefficient

ratio of tensile Weibull modulus to compressive Weibuil modulus
measured major principal strain component

measured minor principal strain component

measured minor principal strain uncorrected for transverse sensitivity
measured major principal strain uncorrected for transverse sensitivity
strain in the x direction

strain in the y direction

measured strain uncorrected for transverse sensitivity; i = 1,2,3

angle from the xy plane
counter clockwise angle from the x axis

phase angle between the <100> crystal direction and the principal stress

shear strain in the xy plane
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Y the fracture surface energy

I'(1/m) the gamma function of I/m

n ratio of tensile strength to compressive strength

() counterclockwise angle from the x axis

u coefficient of friction

;i complex root

\% Poisson’s ratio

v, Poisson’s ratio of strain gage manufacturer’s calibration material
?] angle from the first principal stress

e angle from the <100>direction

Op stress due to bending

O critical stresses for flaw failure

Oeq equivalent stress

Oemax  Maximum effective stress (Batdorf model)

O s average unit volume strength in the direction of the i principal stress
o; i" principal stress (i = 1,2, or 3)

Cij Cartesian stress component

Org  mode I equivalent stress

Opmax maximum stress

Om minimum strength in the Weibull distribution

O, normal stress on the crack plane
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On<hii>

O;

Op

Ooo

Oro

Os

Ox

Ty

the normal stress in the <Akl> direction
scale parameter or unit strength

scale parameter in the </k/> crystal direction.
measured major principal stress

measured minor principal stress

tensile stress

characteristic strength (i.e. strength for a 62 % probability of failure in the Weibull
distribution)

radial stress

tangential stress

shear stress

correction term for the effect of lateral stresses on plate deflection
stress in the x direction

stress in the y direction

critical tensile stress at the surface of an elliptical flaw

shear stress resolved on the crack plane

shear stress in the xy plane

twist per unit length
solid angle

scalar reliability function for whisker reinforced ceramics
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ABBREVIATIONS

BGC  Batdorf’s criterion for a Griffith crack
BGN  Batdorf’s criterion a Griffith notch
CERR coplanar energy release rate
EDM electro-discharge machining
MHSF maximum hoop stress factor

MP maximum principal stress

NERR non-coplanar energy release rate
NS normal stress

PIA principle of independent action
P-O-R pressure-on-ring

SIFC  stress intensity factor coefficient

R-O-R ring-on-ring
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CHAPTER 1: INTRODUCTION

1.1 BACKGROUND ON NICKEL ALUMINIDES

The efficiency and lifetime of a turbine engine component is limited by the ability of the material
comprising the component to sustain stress at elevated temperatures. In order to increase the
turbine operating temperature and improve the efficiency, traditional turbine component alloys
have been improved and a variety of non-traditional or advanced material systems (e.g. ceramics,
intermetallics and composites) have been developed and investigated (Molloy 1990). Advanced
material systems may exhibit an effect of test specimen dimensional scale on mechanical
properties (e.g. ceramics), or anisotropy on both macro and micro scales (e.g. laminated
composites) because the materials are no longer homogeneous isotropic mediums but structures.
Design methodologies for traditional turbine alloys generally do not address such considerations,
and thus new design methods need to be developed as non-traditional materials emerge and are
considered viable for engine applications.

A variety of alloys of intermetallic composition have been developed (e.g. NiAl, TiAl, TisAl, Nb,Al
and MoSi,) in an attempt to further increase the operating temperature of turbine engines (Ashley
1991, Sauthoff 1995). Intermetallics have a unique atomic ordering that can result in congruent
melting and unique properties. Nickel aluminide (NiAl) intermetallics, in particular, have low
density, high thermal conductivity and high oxidation resistance as compared to nickel-based
superalloys such as René’ N5, Table 1.1.1 (Walston and Darolia 1993). A detailed review of the
physical properties of intermetallic NiAl's has been given by Noebe et al. (Noebe et al. 1993). The
term “NiAl” will be used to refer generically to any compound in the B2 NiAl phase field.

The beneficial properties listed in Table 1.1.1 make NiAl alloys possible candidates for turbine
applications. A further step used to improve the elevated temperature capabilities of NiAl's has
been the application of the creep limiting mechanisms used to improve the elevated temperature
capabilities of traditional nickel-based alloys. A variety of mechanisms have been used to
improve the creep resistance of traditional alloys used in turbine engines. One mechanism is the
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precipitation of second phase particles throughout the matrix via modification of alloy composition
and heat treatment. The second phase particles inhibit dislocation motion and the resulting creep
deformation. Another improvement in traditional turbine engine alloys that occurred after the
development of second phase precipitates was the generation of single crystal materials, which
have been used in turbine engines for a decade. The improved creep resistance of single crystal
superalloys results from the lack of grain boundaries, which act as sites for accelerated creep
deformation. As a result of these improvements, the creep resistance of turbine alloys has
improved substantially, thereby allowing an increase in turbine temperatures as shown in Figures
1.1.1 and 1.1.2. However, such improvements in elevated temperature capability are ultimately
limited by the melting point of the alloy system and materials systems with higher melting points
are desired (Fischer and Webster 1990).

The application of traditional creep limiting mechanisms (e.g. precipitation of a second phase in a
single crystal) to intermetallics has resulted in single crystal NiAl alloys that are ideal candidates
for turbine applications with one serious exception: a lack of* ductility stemming from the limited
dislocation motion and contaminant creep resistance. The room temperature fracture toughness
of binary polycrystalline NiAl is on the order of 4 to 6 MPavm (Noebe et al. 1993), and 8.7 + 0.7 to
10 MPaVm and 4.4 + 0.4 MPavm for the {100} and {110} planes’ of single crystals, respectively
(Chang et al. 1992, Reuss and Vehoff 1991 ). Thus, these alloys “are not currently used in aircraft
engines because room temperature fracture toughness and ductility are not high enough to allow
assembly and maintenance operations” (Blankenship et al. 1995).

Further, because of the low fracture toughness of single crystal NiAl, the strength of NiAl may
dependent on the surface finish and the flaw size distribution throughout out the microstructure.
Thus the fracture characteristics of some alloys are probably similar to those of classical brittle
materials such as ceramics and glasses with two exceptions: elastic anisotropy, fracture
toughness anisotropy and limited but possibly significant plastic deformation under specific
conditions such as pure compression (Noebe et al. 1993).

' Conventional Miller indices and notation are used to describe crystallographic planes and
directions in this dissertation: (4k/) defines a specific crystal plane; {4k} defines a family or group
of identical crystal planes except for the arbitrary choice of the x-, y-, and z-labels on the axes.
Similarly, /hkl] and <hkI> correspond to specific directions and families of directions, respectively
(Van Vlack 1975).
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The lack of grain boundaries in single crystal NiAl results in a continuum, as in glass. However,
the presence of a crystal structure and flaws such as coarse precipitates, inclusions, pores, etc.
should create a material more similar to a monolithic ceramic. Also, because the material is a
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Figure 1.1.1: Temperature capabilities of superalloys: temperature for 100-
hour life at a 140 MPa stress (Molloy 1990).
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single crystal, the fracture toughness varies with orientation, as noted previously, and a

preferential fracture path(s) or cleavage plane(s) exists. This results in an anisotropic strength

distribution.

It should be noted that low fracture toughness has not eliminated materials from application in

turbine engines. In the case of ceramics, viable turbines vanes and nozzles in ground based

auxiliary power units were achieved through better processing, machining, and handling that

made the components stronger and more reliable, and through reliability analysis that accounted

Table 1.1.1: Physical properties of NiAl, NiAl alloys and an advanced superalloy (Walston and

Darolia 1993).

Advanced
Property Units | Temp, NiAl NiAl alloys™ | Superalloy
°C

Bonding Covalent/Metallic [ Covalent/Metallic Metallic
Melting Point °C 1682 1610-1676 1390
Density g/em® RT 5.9 up to 6.30 8.60
Young’s Modulus, Polycrystal GPa RT 188 188 205
Young’s Modulus - <100> GPa RT 88 88 130
Anisotropy Factor RT 3.25 ~3.257 2.72
Shear Modulus, Polycrystal GPa RT 715 ~71.5% 74
Poisson’s Ratio RT 0.313 ~0.313% 0.380
Thermal Expansion 10°/°C 600 13.2 13.7 13.5
Specific Heat Jig°C 600 0.64 0.61-0.64 0.46
Thermal Diffusivity cm/sec | 600 0.22 0.1-0.22 0.033
Thermal Conductivity W/m°C 600 76 35-76 15
Electrical Resistivity pohm'em RT 8-10 10-30 120-140

[1] NiAl alloys containing primarily B* precipitates and less than 5 atom percent alloying additions.

[2] Estimated assuming no effect of alloying on the elastic constants.
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for the wide dispersion in strength (Schenk 1999, Price 1999). In the specific case of silicon
nitrides, continued research on processing routes that elongate the grain structure and thereby
provided “in situ toughening” have nearly doubled (5 MPavm vs 8 MPavm) the fracture toughness
(Li and Yamanis 1989), further encouraging applications of what is a low fracture toughness
material.

Thus, presuming maintenance and assembly operation can be sufficiently modified, the use of
NiAl single crystals in turbine applications, such as vane and blades, will require component

design methods that consider the elastic and strength anisotropy, the brittle behavior and the
possibility of a wide size distribution of surface and volume distributed flaw populations.

1.2 PROBLEM STATEMENT

The guiding objective of this work is to further the knowledge and understanding of the failure of
anisotropic, brittle materials and to develop component design capabilities for such materials.
The overall goal of this dissertation follows:

Develop and verify a model for the structural design of anisotropic, brittle monoliths such as single
crystal NiAl.

Specific objectives comprising this goal are as follows.

1.3 OBJECTIVES

(1) Determine the elastic constants of the material.

(2) Determine the mode of failure and the source, composition and structure of strength limiting
defects.

(8) Measure the uniaxial and biaxial strengths of the material for relevant crystal orientations.

(4) Determine the appropriate statistical distribution for characterization of the materials strength.
Develop appropriate reliability model and failure criterion.

(5) Verify the model and criterion.
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CHAPTER 2: REVIEW OF THE PREVIOUS WORK

2.1 FRACTURE OF BRITTLE, SINGLE CRYSTALS

Brittle single crystals such as sapphire, diamond, mica, etc. frequently fracture along specific
planes defined by the crystal structure, even when the externally applied stresses are not a
maximum on the specific planes. This phenomenon is referred to as cleavage and implies “that,
other things being equal, cracking will proceed along the cleavage plane” (Fre’chette 1990). The
extent or quality of cleavage is typically described as “perfect, good, distinct or indistinct,” and is a
result of both the nature of the crystal and the applied stress state. When the stress state is
sufficiently misaligned, even crystals with a distinct cleavage plane will exhibit a ‘conchoidal’
fracture surface, or “that is, forming fracture surfaces fancied to resemble certain sea shells”
(Fre’chette 1990). Some crystals, such as quartz, SiO,, do not exhibit a distinct cleavage.
Polycrystalline materials and materials without a microstructure, such as glass, fracture
conchoidally with the fracture features being controlled by the stress state and crack dynamics.

Although cleavage has been described as “the separation of atomic planes in the absence of any
plastic flow” (LeMay 1981), some semi-brittle metals and non-metals exhibit large dislocation
densities and regions of stable crack growth on the ‘perfect’ cleavage plane. This behavior is a
function of temperature and strain rate (Hirsch et al. 1992).

For ionic and covalently bonded single crystals, the cleavage plane was thought to be best
predicted by a fracture energy criterion (Schultz et al. 1994, Hayashi 1982):

2y, =K. /E=02ma=0G, (1)

where ¥ is the fracture surface energy, G,. is the mode I strain energy release rate, K;. is some
measure of the mode  fracture toughness and E is the elastic modulus in the direction of interest.
Note however, that Equation (1) is an approximation of the energy release rate for an anisotropic
materiél. For collinear crack extension, the conversion of the stress intensity factor into fracture
energy for an orthotropic system should be done using (Sih and Leibowitz 1967)
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where the §;’s are the single crystal elastic constants (compliance’s), K, is the mode I stress
intensity factor and G, is the mode 7 strain energy release rate. In the case of a cubic system such
as NiAl, $;; = S» and Sy, = S. Self-similarity was invoked in deriving the equation and thus the
crack must coincide with one of the principal axes of material symmetry (Sih 1979).

Note that there are two different formulations of Equation (2) published in two different works (Sih
and Leibowitz 1967 and Sih 1979). The later publication (Sih 1979) of this formulation does not
include the 7 term and S is replaced by Szo. This is a result of the form of the stress intensity

factor chosen in the derivation.

Although the above solution is for the principal axes of material symmetry, Yoo and Fu (Yoo and
Foo 1991) applied Eq. (2) to a {110} orientation of NiAl, which though not the principal axis of
elastic symmetry is a plane of elastic symmetry. They calculated the theoretical stress intensity
factor from theoretically derived energy release rates. Because the tensor for such a
transformation is less populated than an orthotropic matrix, Eq. (2) should be applicable. Also,
they applied Eq. (2) to the {100}, which is the principal plane of symmetry, however, it has been
reported that collinear crack extension does not occur (100) (Chang et al. 1992). Note that
collinear crack extension typically only occurs on the cleavage plane.

Metallically bonded materials are less prone to distinct cleavage because of the plastic flow
allowed by the metallic bonding. However, iron, low carbon steel, tungsten, molybdenum,
chrome, (all body centered cubic) and zinc, beryllium and magnesium (all hexagonal close
packed) exhibit cleavage under the appropriate conditions. Although a stress criterion is implied
by Broek (Broek 1982) for describing metallic cleavage, NiAl has a combination of covalent and
metallic bonds and thus a fracture mechanics based energy criterion might be the most
appropriate.  Further, if small flaws exist, the reliability analysis of NiAl materials should be
fracture mechanics based instead of based purely on strength relations.
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2.2 CLEAVAGE OF NiAI SINGLE CRYSTALS

Cleavage of NiAl has been studied in some detail (Chang et al. 1992, Vehoff 1992). Pascoe and
Newey (Pascoe and Newey 1968) reported that cleavage of a NiAl single crystal tested in
compression occurred on the {110}.

Chang et al. used electro-discharge machining (EDM) notched four-point flexure specimens to
estimate fracture toughness and determine the cleavage plane of various NiAl alloys. For binary
NiAl, the fracture toughness and standard deviations on the {100}, {110}, and {111} families of
planes were 8.28 + 0.73, 4.53 + 0.44, and 5.00 + 0.16 MPavm, respectively, implying a {110}
cleavage plane. The fracture plane of the {100} specimens turned away from the notch plane and
macroscopically aligned itself with the {110}, whereas the crack path was macroscopically
coplanar for the {110} specimens, again implying {110} cleavage. It should be noted that Chang’s
fractograph’s (Figure 6(a), pp. 2732) indicate that failure may have occurred from a point along
the notch front rather than from the whole notch front in a quasi-static fashion as is assumed in
calculation of the stress intensity factor. Such unstable fracture in four-point flexure can results in
small errors in the calculated fracture toughness (Baratta and Dunlay 1990). However, little
scatter is apparent in the data via the standard deviations listed above, and the data thus seems
to illustrate the relative toughness of the planes reasonably. Another complication with Chang’s
data is the statement ‘the maximum load was used to calculate the fracture toughness, K.,
according to the equation ASTM E399.” The American Society for Testing and Materials (ASTM)
Test Method E 399 (ASTM E 399 1995) makes no provision for fracture toughness calculation
from four-point bend tests or from maximum load unless specific conditions are fulfilled.

Although Chang (Chang et al. 1992) concluded that the {110} was the cleavage plane, they
observed {511} transition planes at the tip of {110} EDM notched specimens. The occurrence of
{511} transition planes were also noted by Bain and Darolia (Bain and Darolia, unpublished work
that is reported in Chang et al. 1992) on the fracture surfaces of {100} chevron-notched flexure
specimens, and on the surfaces of smooth strength specimens which also showed {110} facets
and other high indices facets (Chang et al. 1992). However, on a low fracture toughness NiAl
alloy (Ni-46Al, K. = 3.05 £ 0.06 MPavm for (110)<001>), no transition planes were observed
(Chang et al. 1992). Although no specific explanation for the transition planes was given, it seems
that the planes result from the crack dynamics and energy and constraint conditions at fracture.
In the low fracture toughness material, the energy at failure can be dissipated without transition of
the crack path onto planes such as the {511}. However, in the alloy with greater fracture
toughness, the conditions at fracture were apparently sufficient to cause the crack to follow
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multiple paths. In the {100} chevron-notched specimens (of the high fracture toughness alloy), the
{511} transition planes occur because the crack can macroscopically follow the high toughness
{100} notch plane, which it is macroscopically constrained via the notch, by transiting locally to
{511} planes. A substantially greater fracture toughness measurement resulted. Chevron-notch
measurements of the {110} were in good agreement (4.61 MPavm) with EDM notched data,
implying equivalence, and no {511} transition was noted. The stable crack growth generated by
the chevron notch probably kept the energy condition such that {511} transition was not necessary
for energy dissipation. The materials tested by Bain and Darolia (Bain and Darolia unpublished
work) are an early version of the material studied in this research.

DeMarco and Ardell (deMarco and Ardell 1996) concluded that neither the {100} nor the {110}
were the preferred cleavage planes, but probably the {511} or {711} were, based on the work of
Daroila et al. (Darolia et al. 1993) and Schneibel et al. (Schneibel et al. 1993). Note that the {1 10}
is close to the {511} and {711}. In order to determine the cleavage plane, they indented 300 um
thick 3 mm diameter disks with a Vickers indentor at a substantial force of 5 kg such that the
corners of the indentor were aligned with the [01 1] and the [100] directions. The disks were then
loaded in biaxial flexure between to concentric rings, thus aligning the tangential stresses on the
classical (100) and (011) ¢leavage planes. They assumed equal probability of failure on all
tangential or radial planes, which, as they note is not the exact case for an anisotropic disk. The
stresses should be greater in the stiff crystallographic directions because the rings tend to enforce
a displacement boundary condition and the stiff directions resist deflection the most. Further, the
probability of failure is not only proportional to the stress, but to the ratio of stress relative to
strength in the particular direction. Thus the probability of failure should be greater for the {110}
plane because it has low fracture toughness and strength and is twice as stiff as the (100). Stress
analysis might help clarify the results. Note that the disks used were “thick” for the range of plate
theory (Diameter/thickness = 10) and significant shear may have developed through the section
thickness (Adler 1991).

Crack extension occurred initially on the macroscopic (100) plane. However, no distinct (100)
facets were visible or identifiable on the surfaces, implying that the (100) was not the cleavage
plane, but a plane near the (100) such as the {511} or {711} planes. Note that the published
fractographs of (100) fracture surfaces look like typical fracture surfaces in which a stress wave
has interacted with the extending crack (i.e. conchoidal fracture), as would be expected for an
isotropic material or an unfavorable orientation. Note that 5 kg is a very large indentation load for
a 300 um thick disk and may have induced sever deformations and residual stresses that may

have influenced the results, particularly if the deformation was anisotropic.
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Figure 2.2.1: The {110} dodecahedral family of surfaces.
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After the initial crack extension on the (1 00), the test specimens were loaded until a second failure
occurred. As the stresses on the (100) were probably partially relieved, failure occurred near but
not exactly on the (011) from the corner of the indentation (i.e. near 90° to the first failure).
Although large, flat surfaces resulted, no specific facets could be identified. Because the stress
and deformation state of such a case is complex, a clear conclusion from these results is difficult.
Deformation and strain energy may have driven the crack plane off the expected cleavage plane.
The use of a more uniform stress concentration (e.g. spherical) or precrack along with stress
analysis might have given clearer results.

The conclusion by Chang et al. that {110} is the cleavage plane of NiAl and that other high index
planes such as the {511} form as a result of energy conditions and crack dynamics is in
agreement with results presented in section 5.4.4. The {110} set of planes forms the
dodecahedral surface shown in Figure 2.2.1.

2.3 ANISOTROPIC FRACTURE MECHANICS

As shown in section 2.2, the effects of anisotropy in fracture mechanics and energy release rate
calculations are occasionally ignored either because of lacking information (e.g. elastic constants)
or inattention to detail. Sih et al. (Sih, Irwin and Paris 1964) demonstrated that stress intensity
factor solutions for isotropic and orthotropic materials are identical for infinite plates with
symmetric and asymmetric self-equilibrating loads. Also, for finite rectangular test specimens of
sufficient length subjected to tension or pure bending, the effects of orthotropic elastic properties
are only marginal for a material such as wood with E.E, = 20:1 when tested along or across the
grain (Walsh 1972). A “sufficient length” is a length-to-width ratio of approximately 6:1 to 8:1 or
greater. The standard flexure test specimen for strength testing of ceramics (ASTM C 1161
1990) is frequently used for fracture toughness testing (e.g. ASTM C 1421 1 999). It has a
constant moment section of 20 mm, a support span of 40 mm and a width of 4 mm when turned
on edge, giving a ratio 10:1. Thus, standard flexure test specimens would be of “sufficient length”
to avoid error when tested on the standard axes. Further, NiAl is substantially less anisotropic

than common woods.
For more general cases of anisotropy (i.e. for a crack is located off the axis of elastic symmetry in

an orthotropic material), Kanninen writes (Kanninen and Popelar 1985) “the stress intensity
factors are in most practical cases just the same as for isotropic bodies. In particular, except
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when unbalanced loads act on the crack faces, the stress intensity factors will be independent of
the materials constants and therefore will be identical to the K values derived in isotropic fracture
mechanics. This holds for each of the three possible modes of crack extension.” However,
Kanninen and Popelar note that one complication arises: “The difficulty in the anisotropic case is
that crack extension will not necessarily occur in a planar fashion. However, because the
mathematical difficulties involved in treating angled cracks is prohibitive, this complication is
usually ignored.” Thus, for brittle materials that exhibit small amounts of stable crack extension
prior to catastrophic failure, the assumptions noted to be typically applied seem reasonable.

With the assumption given above, the main complication remaining in generation of fracture
mechanic data on single crystals is the effects for off-axis testing on the stress state and thus on
the stress intensity factor. However, as can be noted from the stress-strain compliance tensors
below and the equation for the displacements of a beam subjected to pure bending, no twisting of
the sections of cubic single crystals typically tested for cleavage energy should occur. The
tensors given in Equations (3a) to (3e) were calculated from standard transformation equations
(Wortman and Evans 1965, Turley and Sines1971) The x4” and x,’ axes are normal and parallel to
the crack plane and growth direction specified below, respectively:

(100){007)
[1.0428 -0.4210 -04210 © 0 0]
[[0.4210 1.0428 -04210 0 0 0]
[-0.4210 -0.4210 1.0428 0 0 0] (3a)
[0 0 0 0.892 0 0]
[O 0 0 0 0892 0]
[O 0 0 0 0 0.892]
(110){001)
[05339 0.0879 -04210 0 O 0 ]
[0.0879 0.5339 -0.4210 0 0 0 1]
[-0.4210 -0.4210 1.0427 0 0 0] (3b)
[0 0 0 08920 0 0 ]
[0 0 0 0 0.8920 0 ]
[0 0 0 0 0 2.9275]
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(1 10)<?10>

[0.5339 -0.4210
[-0.4210 1.0428
[0.0879 -0.4210
[0.3739x10°  -0.7477x10°
[0 0
[0 0
(1 10)(712)
[0.5339 -0.0393
[-0.0393.  0.3749
[-0.2937  -0.1347
[-0.4407  -0.11018
[0 0
[0 0
(11 1)(710>
[0.3643 -0.0817
[-0.0817 0.5339
[-0.0817 -0.2514
[0 0
[0.2036x10® -0.4799
[0 0

NASA/TM—2002-210519

0.0879
-0.4210
0.5339
0.3739x10°
0

0

-0.2937
-0.1347
0.6293
0.5509
0
0

-0.0817
-0.25137
0.5339

0
0.4798
0

0.3739x10°® 0 0 ]
-0.7477x10°® 0 0 ]
0.3739x10° 0 0 ]
0.8920 0 0 ]
0 2.9275 0.7477x107]
0 0.7477x10°  0.8920]

-0.4407 0 0 ]

-0.1102 0 0 ]

0.5509 0 0 ]

2.0370 0 0 ]

0 1.4009 -0.8814]

0 -0.8814 2.4187]
0 0.20356x 10° 0 ]
0 -0.4798 0 ]
0 0.4798 0 ]
1.5705 0 -0.9596 ]
0 2.2491 0 ]
-0.9596 0 2.2491 ]

14

(3¢)

(3d)

(3e)



The displacement of a plate subjected to pure bending is given by (Whitney and Dauksys 1970,
Ressner and Stavsky 1961)

2
W= %I—[SH (4x'2—1)+ S16R(4x'y'i1)+ S12R2 (43"2_1)] “)

where ¢ is the plate thickness, b the width, / the length and x’ = x/I, > = y/b and R = b/l. The
positive and negative signs in the second term are associated with Sie > 0 and Si5 < O,

respectively. At the corners of the plate (i.e. x’ =+ 1/2, y’ = + 1/2) this reduces to

+3M [?
w=—""—"2[5.R] (5)

f3

Because no S terms are present in the transformed tensors shown in Egs. (3a) — (3e), “liftoff’
(i.e. loss of contact) along the supports via twisting should not occur for cubic single crystal NiAl
subjected to pure bending. However, in bending configurations with shear (e.g. three and four-
‘point bending), shear-twist coupling will occur if Ss5 terms exists. If bend twist coupling were to
occur, fixtures that do not allow articulation of the load line could induce a shear stress and a
mode III stress intensity factor on precracked specimens. Such an effect would occur for the
reported {511} transition plane because the tensor is fully populated, making direct measurements
on such a plane difficult.

2.4 MECHANICAL TESTING OF BRITTLE, ANISOTROPIC MATERIALS

2.4.1 Elastic Properties

The single crystal elastic constants of NiAl have been measure by for a variety of conditions and
compositions (Wasilewski 1966, Rusovic’ and Warlimont 1977). Wasilewski determined the room
temperature elastic constants of 50.6 atom percent Al NiAl by resonance of cylindrical rods in
longitudinal and torsional modes. The reported constants were Ci11=211.5,Cp = 143.2, and Cy,
= 1121 GPa. Note, that Wasilewski's data in Ibsin® do not agree with his data in dyn/cm? by
~1.5%. It appears that the data was measured in dyn/cm® and converted to Ibyin? by a factor of
6.995 instead of the accepted value (Mechtly 1973) of 6.895. The values given in dynes/cm? are
presumed to be correct and used in the following calculations made in order to give a

NASA/TM—2002-210519 15



crystallographic perspective to the moduli. The elastic modulus varies from a minimum of 95.9
GPa in the <100> to a maximum of 275 GPa in the <111> direction, with an intermediate value of
187 GPa in the <110>, as shown in Figure 2.4.1. Note also that Wasilewski reports a single value
for the shear modulus of <110> specimens as determined by torsion of the {110} plane. Actually,
the shear modulus of the {110} plane is a function of direction, and value reported is the apparent
value (Hearmon 1961) given by

G =2/(S, +Ss) (6)

For the (100) and (111) planes, the shear modulus is not a function of direction and the values
reported are representative of all directions in the specified plane.

Rusovic” and Warlimont used the pulse-echo technique with wave polarization to measure the
constants for 50 atom percent Al NiAl. The reported values were Cy; = 198.5, Cy, = 137.5, Cu =
116 GPa, in reasonable agreement with Wasilewski.

The elastic anisotropy factor (AF = 2C,, /(C,, —C,,)) ranges form 3.2 to 3.3 for this data. This

value is intermediate to other metallic single crystals such as aluminum which is nearly isotropic
(A =1.2), and B-Brass (A = 8.5) which is strongly anisotropic.

2.4.2 Uniaxial Flexure Testing

The requirements for uniaxial flexure testing of brittle materials have been studied in detail
(Hoagland et al. 1976, Baratta et. al. 1987, Quinn 1990), and a frequently used standard test
method exists (ASTM C1161 1990). The standard does not address elastically anisotropic
materials specifically, but does provide for an articulated fixture so specimens with as-processed
tolerances, which are typically poor, can be tested. Such a fixture might be capable of
accommodating any bend-twist coupling encountered in a generally anisotropic beam, however,
the effects can be severe (Whitney and Dauksys 1970). Ideally, bend-twist coupling should be
avoided by testing axes of symmetry.

The standard also allows for three and four-point flexure of three different size specimens. Thus,
standard test specimens can be used in the determination of size effects on strength.
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Figure 2.4.1: The elastic modulus E.;. of binary NiAl as a function of orientation
in (a) the {100}, and (b) the {110}. The single crystal elastic constants of

Wasilewski (Wasilewski 1966) were used in the calculations.
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Figure 2.4.2: Typical fracture pattern resulting from flexural failure of a brittle
material (Military Handbook 790 1992).
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Considering the ingot sizes that were available in this study, either the “A” (1.5 by 2.0 by 25 mm in
height, width and length, respectively) or “B” (3.0 by 4.0 by 50 mm, respectively) specimens were
usable. For a wider range of test specimen sizes, a miniature test specimen can also be
designed based on published recommendations (Hoagland et al. 1976, Baratta et. al. 1987, Quinn
1990). The advantages of flexural testing are, depending on one’s viewpoint, the small amount of
required material, the simple geometry, the sensitivity to surface connected defects and the
frequency of use in data measurement. One major advantage borne out in these results is the
asymmetric fracture pattern that results from the primary crack intersecting the compression side
of the beam, as shown in Figure 2.4.2. This pattern makes identification of the failure origin
relatively easy, even when the test specimen fragments into dozens of pieces. In contrast, tensile
strength tests generating a uniform stress state typically produce many symmetric failures and the
primary failure plane is very difficult to identify.

2.4.3 Biaxial Flexure Testing

Biaxial flexure testing has been studied in some detail (Rickerby 1977, Adler and Mihora 1991,
Vitmar and Pukh 1963, Ritter et al. 1980, Shetty et al 1983) and at least one full consensus
standard exists (ASTM F 394 1978). Typically three different loading assemblies, shown in Figure
2.4.3, are used to flex circular or square plates: ball-on-ring (B-O-R), ring-on-ring (R-O-R), and
pressure-on-ring (P-O-R). For model verification, the R-O-R or the P-O-R is typically used, as
more of the test volume is subjected to large stresses. Very little published work (DeMarco and
Ardell 1996, Chen and Leipold 1985) on biaxial testing of single crystal plates is available in the
open literature. However, a review of the isotropic literature is useful as it points out some of the
complications and interfaces to be avoided in the design of biaxial test rigs.

The P-O-R has the advantage that no frictional or contact stresses are developed in the highly
stressed regions, thereby avoiding a “spike” in the stress distribution. However, friction will occur
in P-O-R specimen at the support ring. The frictional effects can be minimized by lubricating the

support ring.

The radial and tangential stresses are not equal except at the center of the disk, and thus
somewhat less effective area is tested than with the R-O-R. Rickerby (Rickerby 1977) developed
a system that used a neoprene membrane to transmit pressure to the test specimen
(diameter/thickness = 17). The reported radial and tangential stress were in excellent agreement
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with plate theory at the disk center (<< 0.5% difference). At 40 percent of the support radius the
agreement was approximately 3.6 and 2.5 percent. However at 80 percent of the support radius
the differences were 25 and 2.4 percent, respectively. The large difference in radial stress toward
the edge of the specimen is less significant as the radial stresses is less than one-third of the
maximum stresses and thus does not effect reliability as much.

The biaxial test rig used by Shetty included a 0.25 mm spring steel membrane between the
specimen (diameter/thickness =~ 13) compressive surface and the pressure source (Shetty et al.
1983). Despite the presence of a membrane, the rig resulted in stresses in reasonable
agreement with plate theory. The measured stresses at the disk center were about 3.5% greater
than the theoretical predictions. The radial and tangential stresses were about 1.5 and 1.9%
greater at 25% of the disk radius, and at 80% of the support ring the radial stress error was 10%.
Reliability calculations are strongly dependent on the peak stress region, and thus the difference
must be small in the central region of the disk. Although the overall differences are not large (i.e.
only 10% toward disk edge), they are significantly larger than Rickerby's (Rickerby 1977) at the
high stress central region. This may be due to the restraining effect of the steel membrane.

The R-O-R specimen has display somewhat less accurate results as compared to the P-O-R
specimen. Adler and Mihora (Adler and Mihora 1991), in a detailed study, used a three
dimensional finite element analysis (FEA) that combined membrane stresses with bending
stresses and included large shear strains. “Slide surfaces” were used in the model to eliminate
the effects of friction between the load ring and plate. Thin plates (diameter/thickness > 20) were
found to experience combined membrane and bending stresses. Thick disks (diameter/thickness
< 10) underwent bending and shear stresses. A centerline deflection of 10% of the plate
thickness introduced substantial membrane stress that increased the tension face stresses. For
very thin plates the contact stresses associated with the loading ring were mirrored (i.e. wedging
stresses occur) such that a tensile face stress almost as large as the compressive contact stress
occurred. In the case of a ZnS disk with diameter/thickness = 23, the radial component of stress
under the steel loading-ring of 3 mm cross sectional radius, as measured with strain gages,
increased by 55% as compared to the expected value. Note that uniaxial strain gages were used
and transverse (up to ~5%) errors may not have been taken into account.

Adler also suggested and analyzed the use of an acrylic (Delrin) ring with a square cross section.
The square cross section ring resulted in substantially lower compressive contact stresses than
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even steel rings with a ratio of cross-section radius to plate thickness of 4:1. Because the
analysis was done at a maximum stress of 69 MPa, which is substantially less than the stress
required to fracture most intermetallic or ceramic materials, the Delrin ring may not be applicable.
Note also that all of the analyses assumed no friction. Friction can create substantial errors (5 to
15%) in four-point flexure tests (Hoagland et al. 1976, Baratta et. al. 1987, Quinn 1990) and
theoretical calculations indicated that errors as large as 50% can occur in R-O-R testing (Fessler
and Fricker 1984). To minimize its effect, a support ring consisting of roller bearings that are
allowed to roll could be used (Godfrey and St. John 1986). Use of a similar loading ring made of
balls would probably generate excessive contact stresses, and thus a soft (e.g. annealed copper)
continuous ring with a large cross-sectional radius, R, relative to the plate thickness, ¢, might be
used (e.g. R, /r ratio > 4). In order to minimize the friction and stress concentration from the upper
ring, a thin Teflon or rubber shim could be placed between the plate and ring. Verification of such
a configuration would require empirical analysis (e.g. strain gage analysis).

For the specific case of a 76.2 mm diameter disk with a Young’s modulus of 100 GPa that was
loaded with steel rings of 3 mm cross-section radius, FEA calculations assuming no friction
resulted in radial stresses in good agreement with the thin plate theory of Vitmar and Pukh (Vitmar
and Pukh 1963) for diameter to thickness ratios between 20:1 and 6:1. The corresponding ratios
of ring cross-section radius to plate thickness for the example above are surprisingly small: 0.8:1
to 0.25:1. Note that the assumptions in most analytic models are that membrane stresses,
transverse shears and highly concentrated loads do not exist. So the choice of specimen
diameter, thickness, load-ring cross-section and elastic modulus are critical for each material

Vitman and Pukh’s solution added a term (rf/Rz) to the conventional solution (Roark and Young
1975 or Timoshenko and Woinowsky-Krieger 1959) to account for the extra stiffening effect of

overhang:
3F R?—-R? R? R
c_.=0_ =0, = 1-v)—=—~ .2 t (1+y)ln=2 7
max T 66 271'1'2':( ) 2R02 Rdg ( ) R,- ()

where F is the applied force, R; is the load or inner ring radius, R, is the support or outer ring
radius, R, is the plate radius, ¢ is the plate thickness and v is Poisson’s ratio. For a round plate
with no overhang, the (R,%/R?) term goes to unity and the conventional solution is obtained. The
solution can be used for a square plate if an effective value of R, that expresses the characteristic

NASA/TM—2002-210519 22



size of the plate is used. The approximate arithmetic mean of the circles inscribed by and
inscribing the square plate is suggested (Vitmar and Pukh 1963)

R, =1(1+v2)4 (®)

where 7is the length of the edge. The maximum deflection for such a plate can be estimated from
(Vitmar and Pukh 1963)

8 _3rli-viRR? {ﬁ[n (-v)&: “sz)fiJ_[Hln R, )} (©)

»277:Et3 R? 2(1+v)R? R? 2

i i

where E is Young’s modulus.

A closed form solution including friction, shear and overhang has been derived by Fessler and
Fricker (Fessler and Fricker 1984). The solution indicates that friction increases the stress in a
region ~0.25; outside of the loading ring by 50 percent for thick disks with a coefficient of friction of
0.4. Friction lowers the maximum stress within the loading ring. The result of friction is to bias the
failure toward the loading ring and lower the effective area as shown in Table 2.4.3.1. The
reduction in effective area is most significant for thick disks and large Weibull moduli, and results
in increased observed strength. Note that Equation (15) of Fessler and Fricker’s stress solution
(Fessler and Fricker 1984) is missing the term (1-v J(R’-R/)/2R 2.

Of particular importance to our material is the requirement that deflection be less than 10% of the
thickness, as the strong, <001> orientation has the lowest stiffness (E<100- = 96 GPa). Based on
the analysis of Adler and Mihora, it may be difficult to design a ring-loaded NiAl specimen that can
be accurately described by Equation (7). Although strain gages and FEA could be used to
estimate the actual stresses and design an accurate R-O-R test specimen, it is probably simpler
to avoid the complications associated with the R-O-R specimen and to use the P-O-R specimen
instead. A further complication with the R-O-R specimen is the lack of a closed form stress
solution for single crystal materials. An even more compelling reason to use the P-O-R method is
that a closed from displacement solution exists for an anisotropic material subjected to uniform
pressure (Okubu 1949).
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Table 2.4.3.1: Effect of friction on the effective area, A,, of a 25 mm diameter disk loaded between
10 and 20 mm diameter concentric rings. Poisson’s ratio = 0.23. Values were calculated by
numerical integration of the PIA model (Barnett et al. 1967) model, see section 3.4.1, using the
stress functions of Fessler and Fricker (Fessler and Fricker 1984).

Effective Area, mm~

Coefficient of Friction Weibull Modulus Thickness, mm

u m 1 2
0 5 235 235
0.05 “ 230 226
0.1 “ 226 218
0.2 - 218 202
04 “ 202 172
0 10 197 197
0.05 “ 189 182
0.1 “ 182 167
0.2 “ 167 142
04 “ 142 102
0 15 184 184
0.05 “ 173 162
0.1 “ 162 142
0.2 “ 142 110

04 “ 110 70
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2.4.4 Uniaxial Tensile Testing

A variety of uniaxial, tensile test configurations for brittle, anisotropic materials have been
standardized (e.g., ASTM C 1273-95a 1999). Figure 2.4.4.1 shows tensile specimens that have
been used to test brittle materials. Unfortunately, most of these specimens are too large to cut
from the billets available in this work. Thus, design of a smaller test specimen that can be gripped
with a fixed collet system needs to be considered. The use of a fixed collet presents advantages
and disadvantages: precise alignment can be made if the proper fixtures are employed, and only
a short shank length is required. However, the fixed end-grip condition can result in shear

stresses for anisotropic materials tested off axis.

An analysis of the effects of fixed end-grips on displacements, strains and stresses for an
orthotropic material rotated about the = axis was done by Pagano and Halpin (Pagano and Halpin

1968). If the analysis is repeated for a cubic system the same equations result:

o, =—2Coay—2%coy2+c,y+C2

11
c,=0

T.\'y =C0(y2 _DZ)
€, =S,,(—2C0xy+C,y+C2)—S,6CO(y2 +D2)

11

€y =S12(—2C0)0}_2§EC0)’2+C1)’+C2 ]+SZ€C0(y2+D2) (10)

S
Yy = 5,6( —2C0xy—25—76—C0y2 +C,y+C, )+ SeCo (y2 +D2)

11

where D is the specimen half-width and the C;’s are combinations of the elastic constants and the
applied axial load. If the analysis is applied to the typical cleavage orientations in Section 2.3, no
shear stresses result in the xy (cross section) plane. However, for orientations such as the <511 >,
etc., shear stresses on the order of 20 percent of the normal stress result.

Thus a small cylindrical test specimen as shown in Figure 2.4.4.2 could be used. The stress
concentration factor at the gage to shank region is estimated to produce a 2 to 3% increase the
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tensile stress (Peterson 1974). The concentricity tolerance requirements between the shank and
the gage section can be calculated from basic stress equations for a rod

0, =4F | nd? i
0, =24Fe/nd*

resulting in a percent bending of

% _ge (12)
o d

t
where d is the gage section diameter, ¢ the eccentricity. For two percent bending a concentricity
of 0.007 mm or less is required for the proposed specimen. Centerless grinding can attain such

tolerances.

Another issue associated with tensile testing is that both the center and surface of the test section
are subjected to the same stress, and the specimen fails from both surface and vol'ume flaws. As
the flexure specimens are biased toward surface failure, predictions of tensile behavior from
flexure data is more complicated.

2.4.5 Torsion Testing

The advantage of torsion testing is that it produces a maximum shear stress equal to that of the
maximum normal stress instead of the 1:2 ratio generated in tension testing. Thus the opportunity
for ductile behavior is greater in the case of low ductility, and the sensitivity of the fracture strength
to combined stresses or shear, can be determined. This is particularly important for determining
the failure mechanisms of a material that exhibits yield under certain conditions and brittle fracture
under others, as the design might be geared toward yield.

No full consensus standards exist for torsion testing of brittle materials. In addition, torsion testing
of ceramics and NiAl has been performed infrequently (Blankenship et al. 1995, Petrovic and
Stout 1981, Oda et al. 1988). Torsion testing of <100> and <110> binary, NiAl single crystal rods
was performed by Blankenship et al. Specimens of <001> orientation exhibited a,<100>
dislocations and shear strain to failure of 0.11 + 0.03 whereas <110> orientations exhibited both
a,<100> and some a,<110> dislocations with a torsional strain to failure of 0.02 + 0.008. The
dislocation density was greater at the specimen surface than the center as would be expected for
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Figure 2.4.4.1: Tensile specimens used to test brittle materials (ASTM C 1273-
95a 1999). All dimensions in mm.
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TOTAL LENGTH IS NOT CRITICAL
STOCK IS ALREADY CUT TO LENGTH
AND NO FURTHER CUTTING IS NECESSARY,

_ GRIPS AND 3.18 DIA. MUST BE
( 15.88 CONCENTRIC TO 0.008 T.IR.

175
_{J\ 318 6.35

DIA +/- 0.050

MUST NOT VARY DIA +/- 0.025
OVER 0.013 FOR TYP. EACH GRIP
16 mm LENGTH.

R 20.6 APPROX.

FAIRING POINT. MUST MEET
3.18 DIA. AT POINT OF TANGENCY
WITH NO UNDERCUT.

Figure 2.4.4.2: Miniature tensile test specimen. All dimensions in mm.
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torsional loading. The shear modulus calculated from the tests were very different than reported
by Wasilewski (Wasilewski 1966) (G.100.=153 + 7 vs. 112.1 GPa and G.110-=160 + 27 vs. 525
GPa).

In contrast to the results of Chang et al. (Chang et al. 1992) which found near {110} and {511}
cleavage planes, Blankenship et al. found fracture facets oriented about 10° from the <001> or
near <112> fracture surfaces, in agreement with tensile results of Schneibel (Schneibel 1993).
For the <100> test specimens, their stress analysis indicated that the (112) and (110) were
subjected to a large normal stress yet the actual failure planes were within 18° of the (100), which
was subjected to large shear stresses. For the <110> test specimens the (100) and (112) were
subjected to large normal stresses, however, the (001) and (1 12), which are oriented at 90° to
the (110), were also subjected to large shears. Failure was observed on {001} and {112} type
planes. Although no strong conclusions were put forth by Blankenship et al., it seems that local,
shear induced failure occurs initially on the {100} planes and is linked together by local cleavage
near the {112}. Although the {110} is thought to be the natural cleavage plane, the large
orientation difference between the {110} and the shearing {100}, which is either 45 or 90°, may not
have allowed failure to link onto the {110} but on a more favorably oriented {112}.

" Blankenship et al. calculated stresses in NiAl with solutions for elastically isotropic materials with
out specific justification. This can be examined via the solution for an orthotropic rod in torsion
(Hearmon 1961). The stresses and angle of twist per unit length, &, are given by

O, HCss(C+1)x
O, 0C,(~(C-1)y ' (13)
& =16T(S,, + Sy )/md*

with C= (C55 -C, )/ (C55 +Cy )

where T is the torque, d is the diameter of the cylinder, and the x;'s are the distances along the
coordinate axes. The solution was generated such that the crystal axes, coordinate axes and
geometric axes of the rod were aligned. The solution applies to orthotropic materials in standard
position or materials of higher symmetry transformed such that the tensor is of an orthotropic
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form. For the (100)<001> and (110)< 110> tensors shown in section 2.3, the surface shear

stresses reduce to

0, =—0,, =16T/nd’ (14)

which is the solution for an isotropic medium.

Considering the size of the billets available for this study, the complexities of test specimen
design, specimen alignment and the machining costs associated with torsion testing, the use of
simple beam and plate specimens to generate both uniaxial design data and multiaxial model
verification data seems appropriate for brittle, anisotropic materials such as single crystal NiAl.

2.5 DETERMINISTIC DESIGN CRITERIA FOR BRITTLE MATERIALS

2.5.1 Stress-Based Criteria

2.5.1.1 Maximum Principal Stress

For materials that show little deformation or shear sensitivity upon fracture, the normal stresses
should control failure. As the maximum principal stress is the largest normal stress, this theory
proposes that a predefined form of failure ensues when the maximum principal stress exceeds
the strength. No specific flaw is assumed. Typically, the material’s tensile strength is assumed
constant in all directions and a safety factor is applied to ensure survival and to account for load,
geometry and material property variations (Shigley and Mischke 1989). Compressive stresses
are treated in a fashion similar to tensile stresses. The criterion is formulated as

0,285 /N,

(15)
O, <S8, /N,

where the three principal stresses have the algebraic order ¢; > 0, > 03, and Sy75 and Sycs are the
tensile and compressive strengths, respectively, and N; and N, are appropriate safety factors for
the conditions considered. The theory does not account for interactions between various principal
stresses and, as mentioned above, and ignores effects of shears. A final limitation is that the
theory does not account for the effects of scale (i.e. component size) exhibited by brittle materials
such as ceramics and glasses.
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2.5.1.2 The Modified Mohr Theory and the Tsai-Wu Theory

These theories, though more advanced than the Maximum Principal Stress Theory, have the
same limitation - they do not account for the effects of scale. The Mohr theory allows for different
strengths in tension and compression, and torsional failure is dominated by the tensile stress
component. However, it applies only to materials with isotropic tensile and compressive
strengths.

The Tsai-Wu (Tsai and Wu 1971) formulation mathematically represents the most general case of
an ellipse (i.e. translated and rotated off the origin):

g

F0,+F,0,0, =1 (16)
or with expansion

F\0, + F,0, + F,,6] + F,,0; + F,,0,0, + F,,0,0, =1 (17)

which is equivalent to an ellipse translated off the origin and rotated, i.e.
Ax* +Bxy+Cy*> + Dx+Ey+F =0 . (18)
It is thus symmetric and convex for a discriminant less than zero (Ellis and Gulick 1978). Thus the
theory cannot describe materials with equibiaxial weakening. The theory might be adapted to

weakest-link materials by incorporating it into a scaling function, but the symmetry of the function
makes it unlikely that it would work for brittle anisotropic materials exhibiting cleavage planes.

2.5.1.3 Principle of Independent Action

Another stress-based criterion is the principle of independent action or PIA (Barnett et al. 1967).
Although this criterion was formulated for use with statistical functions, the stresses are treated as
deterministic and the equivalent stress inducing failure is given as

/
o, =y +or+or)" (19)

for

0,>0,>0;>0
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where the o;’s are the principal stresses, m is the Weibull modulus (see section 2.6.1), and O is
the equivalent stress that induces failure 100% of the time when it exceeds a specified value.
Principal stresses less than zero are generally ignored.

2.5.2 Fracture Mechanics Criteria

A variety of deterministic fracture mechanics failure criteria exist. These can be reformulated in
terms of an equivalent stress for failure by assuming an embedded or surface connected crack
and corresponding stress intensity factor coefficient. Thus, the strength exhibited by a brittle
component subjected to multiaxial stresses can be related to the fracture mechanics criterion. In
general the stress intensity factors for the loading modes shown in Figure 2.5.2.1 can be
formulated as

KI = YI \/a— O.rz
KII = Yll‘/; T (20)
KI][ =0

where ¢, and 7 are the normal and shear stresses on the crack plane, ¥; and Y, are the mode /
and mode /I stress intensity factor coefficients (SIFCs), and a is the crack dimension. For a
through-wall surface crack of length 24 in an infinite plate, the stress intensity factors are

K, =\rao,
K, =\rmat . (21)
K, =0

For a semicircular crack Smith determined the mode 7 solution for an infinite plate (Smith et al.
1967). For mode 17 Smith and Sorensen gave a value for an aspect ratio of a/c= of 0.4 with a
crack depth to section thickness ratio of a/z = 0.2 (Smith and Sorensen 1974). Note that for an a/z
ratio < 0.5, the Y, value increases only slightly, and the value for a/s = 0.2 should approximate that

for a thick plate, so

K, = 1366va o,
K,=1241Nat . (22)
K, =0
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Mode 7 Mode 17 Mode 117

Figure 2.5.2.1: Basic modes of loading and displacing a crack surface.
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SIFC’s for surface cracks were also approximated from those of embedded cracks by Theimeier
et al. (Theimeier et al. 1991):

K, = 1.141\/20,;-:1.286«/;0',,
N

K, =114 1 i 147007z 3)

Jr 2-v

K, =0

The normal and shear stresses in terms of the principal stresses and polar and azimuthal angles

are

0, = 0,¢0s’0 +0, sin’0

1 , (24)
T= 5‘(61 -0, )sin(29 )l
for a surface connected crack as shown in Figure 2.5.2.2, and by
0, =(0,c08°0 +0,sin’0 )cos’ + o, sin’p
» 512 (25)
7= [((Gl ~ 0, )cosp sinf cosd ) + ((0'1 cos’0 +0, sin’0 -G, )cosp sinq)) ]
for an embedded (volume) crack.
In general, a failure criterion can be written in terms of the applied stress intensity factors as
FC(K,,K,,,K,,,)_>_FCC (26)

where F_ is the critical value of the materials resistance to unstable crack propagation. No stability
requirements are imposed. The equivalent mode I criterion is defined as

FC(Kqu 0,0) =FC(K1’K11’K111) (27)
where the equivalent stress and stress intensity factor are related by

Kleq = YI ‘\/;GI

eq *

(28)
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Figure 2.5.2.2: Normal and shear stresses resolved on a crack plane rotated at

an angle to the principal stresses: (a) surface crack and (b) embedded
crack.
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Some of the existing criterion and equivalent stresses are
2.5.2.1 Mode  Failure (MP):

FC(KI’KII’KIH)=KI
FC. =K, . (29)
O-qu =O—n

This is equivalent to the maximum principal stress formulation (Equation 15).

2.5.2.2 The Maximum Hoop Stress Factor (MHSF) (Erdogan and Sih 1963):

@(zK, +6K7 +8K )Kf,
/2
(k +12K2 ~K,0JKio? 18K J

FC =K, : (30)

x/§(20 +6y02 +87°Y] [Y? )Y

/2
(Y ‘07 +12Y,7° -Y,0,.|Y 0] + 8V 1’ f

FC =

2.5.2.3 The Coplanar Energy Release Rate (CERR) (Paris and Sih 1965):

1 1 )
FC(K,,K,,,K,,,)— (K +K,,+ K;,,)
I+v

KZ
FC,=—& . (31)
E
Y' 2 YZ 1/2
Oy =| 0. +L 17+ —— t A
Y} I-vy,

2.5.2.4 The Maximum Noncoplanar Energy Release Rate (NERR) (Hellen and Blackburn
1975):
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)i —
FC(K,,K,,,K,,,):FJKj +6KK2 +K

2
ch

FC.=—F 32
z (32)

c

n n 4
Y

Y 2 Y4 1/4
o =[G4 +6Y#f,c73r 2+if“)
I 1
Other, empirical, fracture mechanics criterion exist (Richard 1985; Shetty 1987) but these contain
factors that allow variation of the solution to account for microstructural (i.e. coarse grains) effects
prevent crack sliding and are thus less fundamental.

2.5.2.5 Criteria for Porous Media

The formulations of Egs. 20 to 32 treat flaws as planar cracks. In actual materials the critical
flaws are often pores, agglomerates or inclusions instead of idealized cracks. In the case of
inclusions, tractions could be transmitted across the interface and in the case of pores and
agglomerates, the flaw has a complex three-dimensional shape. For porous medium, Babel and
Sines (Babel and Sines 1968) proposed the following biaxial fracture criterion

o’ =(1+2h), -0, (tension quadrant)

* (h + 7)2 (0'1 - 02) . . (33)
o = (compression-tension quadrant)
4h  o,+0,

where £ is the ratio of the major to minor axes of the elliptical cavity and ¢ is a critical tensile
stress at the surface of a flaw. The value of ¢ is considered a characteristic of the material.
Good agreement occurred between the model and data generated with hydrostone plaster, high-
silicon cast iron and a porous zirconia. The effect of test volume was not specifically addressed,

however, zirconia, like most ceramics, should exhibit a scale effect. If o is equated to an

equivalent stress, the criteria becomes

c,, =+2h)p, -0, for ¢,>0,>0

? — . 34
= (h:h]) (©, +62) foro,>0>0, ey
0, +0,
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2.6 PROBABILISTIC DESIGN CRITERIA FOR BRITTLE MATERIALS

Although reliability theories that account for the variation of a variety of parameters (e.g.
dimension, properties, applied loads, etc.) on the system or component reliability exist (Haugen
1980), we are predominantly concerned with a materials strength variation and any effect of scale
on the measured strength. The most commonly used reliability theories that account for a brittle
materials strength variation and an effect of scale are based on that of Weibull (Weibull 1939).
Ideally, a useful reliability theory should require only simple laboratory data (e.g. flexural strength)
to infer the reliability of components subjected to nonuniform, multiaxial stresses.

2.6.1 The Weibull Model

The most basic reliability theory applied to design brittle components is the direct application of
the Weibull statistical distribution (Weibull 1939). The cumulative probability of failure or risk of

rupture, P, of a brittle component subjected to applied stresses, o, is

G—G m
P. =1-exp|— = |dx| for c>0
Fx o m

X o

(35)
P..=0 for o<o,

where m is the Weibull modulus, o, is the scale parameter, and o,, is the minimum strength. The
scale parameter is the strength corresponding to a unit volume or area stressed in tension. The
minimum strength can be determined via data analysis if justification exists, or set to zero
otherwise. The integration is carried out over the components surface area and/or volume,
depending on the location of the flaws resulting in failure, and the independent variable x is
replaced with area A or volume V. Flaw types include both intrinsic (i.e. those inherent in the
material) and extrinsic (those generated on the surface of the material by external events such as
machining). Examples of intrinsic flaws are pores, inclusions, course grains, agglomerates, etc.
which are generated during processing and distributed throughout the volume and exposed at the
surfaces. Extrinsic flaws are machining damage, handling scratches, nicks, etc. which are
located on the surface only.

The shortcomings of the use of the Weibull distribution as a reliability theory have been discussed
at length (Batdorf and Crose 1974, Batdorf 1978, Evans 1978, Lamon 1988). The Weibull model
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is purely statistical and thus does not recognize the existence of flaws with specific characteristics
(e.g. sharp or dull), thereby requiring empirical measure of the distribution of each flaw population.
Further, it does not specifically address the effects of multiaxial stress, but implies the principal
tensile stresses to act independently, thereby ignoring shear and compressive effects, which may
be of importance.

The assumption of independence of the principal stresses leads to a probability of failure
formulation known as the principal of independent action (PIA) (Barnett, et al. 1967, Freudenthal
1968). For surface and volume analysis, respectively, the functions are

P, =1-exp —j[g’—:’ +,:gi:l dA (36)

A o o

G m 0- m G m
P, =1-exp —j[c—’] +[G—2] +[G—3J av (37)

|4 o o 0

where o;, ;, and o; are the principal stresses. If, instead, the normal stresses in all directions are
assumed to reduce reliability and averaged, the normal tensile stress averaging model proposed
by Weibull (Weibull 1939) for multiaxial stresses is attained:

P, =1-expl - [k, (G, )m) dx (38)
where k,,, is a polyaxial crack density coefficient. The averaged normal stress is

c.) = J'xa,j"dx (39)
0.)

Jas

where the variable x is replaced with the contour C for surface analysis and surface S for volume

analysis, and the integration is performed about a unit circle or a unit sphere, respectively. The
model is capable of predicting volume effects for a uniaxial stress state (Lamon 1988).
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2.6.2 The Batdorf Model

Batdorf and Crose (Batdorf and Crose 1974) proposed a model that combined the probability of a
crack existing in a volume with the probability that the crack will cause fracture. The probability of
a crack existing for a material with a crack density N is, for a volume element,

P.=NAV (40)

Because real materials have a distribution of cracks sizes and shapes, the number of cracks in a
volume AV that have critical stresses between o, and o,, + do,, is needed. Defining a distribution
function N(c,,) which gives the density of cracks having a critical stress less than or equal to Ccr,

the number of cracks is

vl
dN = AV ?doﬂ (41)

cr
The probability that the crack is critical is given by the ratio of the solid angle, @, containing the
normals to all the orientations for which the normal stress component is greater than the cracks

critical stress to the solid angle of a unit half-sphere:

P=Q(Z0, ) 4r 42)

where X represents the applied stress state. Though the initial theory (Batdorf and Crose 1974)
was formulated for the normal stress component only, general stress states were later considered
(Batdorf and Heinisch 1978). The probability of failure of a component becomes

P =1-—exp j

X

[ j Q.0 )aN v, :,dx )
4r do

4] cr

where o,,,, is the maximum effective stress that a randomly oriented flaw could experience from a

general stress state.

Batdorf and Heinisch (Batdorf and Heinisch 1977, Batdorf and Heinisch 1978) also introduced
effective stress criterion for the model based on the work of Oh (Oh 1970, Oh 1973) and Paul
(Paul and Mirandy 1976) for the stress distribution around Griffith cracks and flat, ellipsoidal
cavities. For A Griffith crack, the effective stress is
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o, =h(on +4/02 +12) | (44)

where £ is the ratio of the major to minor axis of the ellipse. For a Griffith notch the effective

stress is

c, = 1.12h(o,, (1+v)+yo2(1-v)+ (2 /1. 12)) (45)

The model shown in Eq. (43) reduced the gap between physically based fracture mechanics
models and statistically based weakest link theories such as Weibull's, and avoided the
assumption of independence of stress which “ignores the fact that, for some crack orientations,
two principal stresses can combine to fracture a crack that would not fracture by either stress
acting alone” (Batdorf and Crose 1974). The flaws were assumed to be noninteracting, randomly
oriented, uniformly distributed, closed, planar entities in an isotropic medium that was subjected to
macroscopic tensile stresses only. No stable or subcritical crack growth was assumed to occur
prior to failure. Crack size was not explicitly treated.

Predictions of the probability of failure of graphite (Poco AFX-5Q) tubes subjected to hoop and
axial stresses were made from tensile dog-bone data using volume integration only. The ratio of
effective volumes was 3:1 and the prediction was within 1% when the tubes were subjected to
axial loading and within 8% for hoop loading. The larger error for hoop loading was attributed to

the possibility of anisotropy

Giovan and Sines (Giovan and Sines 1979) tested alumina (WESGO AL-995) in uniaxial and
biaxial flexure with longitudinally ground and lapped surface conditions. Uniaxial strength data
were attained by placing wide beams (i.e. plates) in four-point flexure (A, =315 mm®). The biaxial
data was attained by R-O-R loading of circular plates (A, = 641 mm?). The specimens were
designed to have the same surface area subjected to the maximum principal stress. The
machining was relatively aggressive (0.05 mm removal rate) as compared to what is now typically
specified (0.002 mm per pass for the final 0.06 mm, ASTM C 1161 1990), and probably resulted
in machining damage and the relatively large Weibull moduli (19 and 21 for the as-ground plates
and disks, respectively, and 17 and 18 for the lapped plates and disks respectively, as estimated
from data given in the paper). Also, the supports were not allowed to roll in either specimen
configuration, and thus errors due to friction probably existed. Their results indicate that the
Weibull and PIA models over and underestimate, respectively, the probability of failure of the
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concentric ring specimens with approximately twice the effective area as the four-point flexure
specimens from which the predictions (both lapped and as-ground) were made. However, the
Batdorf model with the following shear-sensitive effective-stress for a penny shaped crack was
satisfactory for both the lapped and as-ground conditions:

6, =02 +72/(1-0.5v) (46)

where 7is the shear stress acting on the crack plane. Eq. (46) is based on the coplanar energy
release rate (Batdorf 1977). Note that the small effective area differences results in small
differences in the measured strengths of the beams and disks. Thus, the ability of the model to
scale over large areas was not rigorously tested. Surprisingly, the as-ground disks were not
reported to fail parallel to the grinding direction as would be expected considering the aggressive
grinding and the fact that the transversely ground plates exhibited lower strength than the
longitudinally ground plates (235 + 18 vs. 202 + 20 MPa) as would be expected. Unfortunately,
the specific failure origins were not identified. Both the uniaxial and biaxial specimens had the
same surface area, and the disks were about eight percent weaker than the uniaxial plates for
both finishes, implying a closed flaw population (i.e. equibiaxial weakening occurred).

Thiemeier and Bruckner-Foit (Thiemeier and Bruckner-Foit 1991) analyzed aluminum nitride (AIN)
four-point flexure (A, =99 mm? and R-O-R (A, = 453 mm?) data using an equivalent stress
approach based on the work of Batdorf et al. (Batdorf and Crose 1974, Batdorf and Heinisch
1978). Six different failure criterion were considered for through-wall and semicircular crack
types: The maximum principal stress, the coplanar energy release rate (Paris and Sih 1965), the
maximum hoop stress factor (Erdogan and Sih 1963), the minimum strain energy density (Sih
1974), the maximum noncoplanar energy release rate (Hellen and Blackburn 1975), and the
empirical criterion of Richard (Richard 1985). The maximum noncoplanar energy release rate
and the empirical criterion of Richard produced predictions within the confidence interval of the
disk data for both crack types. The maximum hoop stress criterion agreed only for the through-
wall crack configuration. The results illustrate well the importance of fracture criterion and
confidence bands in making predictions.

2.6.3 Criteria for Anisotropic Materials

Many brittle materials are anisotropic in some sense. A material can be anisotropic in three
aspects particularly relevant to the design of structures: elastic behavior, strength (by way of
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fracture toughness), and flaw distribution. Single crystals, textured polycrystalline materials and
composites are anisotropic in terms of elasticity and strength. The flaw populations may or may
not vary with orientation.

Of such anisotropic materials, graphite has been used frequently in studies of weakest-link
reliability models (Batdorf and Crose 1974, Buch 1976, Margetson 1976). Batdorf and Crose
(Batdorf and Crose 1974) treated graphite as isotropic (Poco AFX-5Q) although they concluded
that it might have been anisotropic.

Margetson (Margetson 1976) accounted for the anisotropic strength distribution of graphite by
modifying the PIA formulation of the Weibull model (Barnett 1967, Freudenthal 1968). The
principal stresses were normalized with the strength in the principal directions instead of with a
single characteristic strength as done for the isotropic case. Also, to account for compressive
strength being different from tensile strength, a step function was added which multiplied the
direction dependent tensile strength by the ratio of compressive strength to tensile strength. The
probability of failure for volume analysis was given as

m m m

O, O3

Y o
P, =1—exps— F(—)) ——1 +|= H =z dV (47)
w=reol ) el el e

—(1) —=(2) —(3)
where I'(1/m) is the gamma function of //m, and © #>0px ,and Op are the respective

average unit volume strengths in the direction of the principal stresses, o, , 6, and o;. The gamma
function allows the average unit volume strengths to be used instead of the characteristic values.
The step function to account for compressive stresses is

H(o)=1, 620
(48)

H(6)=-n, 6<0

where 7 is the ratio of the compressive and tensile strengths of the material. In terms of the scale
parameter, which is typically used in Weibull type functions, the probability of failure is
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o- n G m G m
P, =1- - ! + 2 + 2 dv 49
o Eimer Vf[oz“mc,)] L;,Z)H@)J [oz“H(os)J “9)

Although volume integration was specified in the model and used in the data analysis, an area
integral was probably more appropriate as all the testing was done in flexure. In order to
determine the materials strength envelope, three-point flexure tests were conducted on test
specimens cut from graphite blocks. The strength data was fit with an ellipsoidal function that had
a circular cross section in one plane (i.e. the strength was isotropic in that plane). To verify the
model, circular disks were cut parallel to the isotropic plane and tested in R-O-R biaxial flexure. A
ratio of compressive to tensile strength of n = 8 was assumed. The large n implies that the
compressive stresses do not greatly effect the reliability. The model was slightly conservative
(approximately 3%) in predicting the biaxial strength from the three-point flexure data The slight
conservatism could have resulted from friction between the loading rings and specimen or contact
stresses, as no mention of lubrication is made. Note, however, that for a plate cut from the
isotropic plane and tested in flexure, the material and model simplify to the isotropic case and the
model was not verified for the anisotropic case.

One minor shortcoming of the model is that it assumes that the compressive strength distribution
differs from the tensile distribution by only a single multiplying factor. This is probably not the case
(Adams and Sines 1976) and the inclusion of compressive effects requires characterization of the
compressive strength distribution as a function of orientation. If the Weibull moduli are different,
the Weibull modulus could also be multiplied by a step function as follows

mH mH mH
O (o3 (o)
P =T-expy— || —777—| +|—2—| +|—2%5 | 50
mEiTer J[o;’mo,)} [o-;?w,(oz)J [cgsw,(og)] 0

where the step function to account for compressive stresses on Weibull modulus is

H,(c)=1, o20
(51)

H,(6)=y . 0c<0
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where y is the ratio of the Weibull moduli in compressive and tensile loading of the material.
Another problem with the model is that it only considers the principal planes, which may not be the
weakest planes. Stress states might arise in which Iargé normal stresses are resolved on the
cleavage planes while the reliability is only a function of the stresses and strengths in the principal
directions. Thus, the ratio of normal stress to strength may be a more relevant parameter in
calculation of reliability. A better modification of the PIA model might include both the principal
stresses and the stresses on the cleavage planes, both normalized to the appropriate strength
parameters. Note that both the {100}, {110} and {111} families of cleavage planes are not typically
orthogonal to each other. Generally, the occurrence of the maximum principal stresses on one
planar set precludes its occurrence on another. However, the {100} and {110} and the {110} and
{111} sets contain members that are orthogonal to each other and the existence of the maximum
principal stress on a given cleavage plane does not preclude the resolution of the second principal
on another set. Further, when the principal stresses are equal, they will be resolved onto all
crystal planes a point in the body.

Duffy and Arnold (Duffy and Arnold 1990) followed the approach of Weibull (Weibull 1939) and
Barnett and Freudenthal (Barnett, et al. 1967, Freudenthal 1968) to develop a reliability model for
transversely isotropic whisker reinforced ceramic components. As with most weakest link type
models, no interaction is assumed, and the material is a continuum that is sufficiently discretized
to make stress, strain and temperature constant while still having sufficient volume to be a
statistically homogenous medium. Unlike the previous models, however, they took advantage of
the scalar nature of reliability functions and the contaminant tensor invariance under orthogonal
transformations. The materials symmetry was accounted for via unit vectors incorporated into the
reliability function. Thus, invarients related to the stress components causing fracture were
developed and incorporated into a PIA like model, resulting in

0-01 602 0.03 603

for a unit volume where the I'; ‘s are the invarients, the m;‘s are the Weibull moduli and the O,i's

are the scale parameters. The component reliability would be given by integration of the function
over the total area or volume, as for all Weibull type formulations. No verification of the model

was performed.
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Based on the literature reviewed, no fracture mechanics based reliability model exists for
application to brittle materials exhibiting strength and elastic anisotropy. The isotropic reliability
models based on the Weibull distribution offer a good starting point for the development and
verification of a more general reliability model that is applicable to brittle materials exhibiting

elastic and strength anisotropy.
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CHAPTER 3: THEORY: ANISOTROPIC RELIABILITY MODEL

In this chapter, a reliability model for anisotropic materials will be derived from two approaches:
the first from an intuitive analysis of how the strength distribution in an anisotropic body effects the
reliability of the body, and the second from a probabilistic analysis of the effects of a crack
distribution of random orientation and size on the reliability of an anisotropic body.

3.1 MODELS BASED ON THE PRINCIPLE OF INDEPENDENT ACTION

Per the discussion in Chapter 2, the PIA model as modified for anisotropy (Margetson 1976) does
not consider that the principal stresses may not align with the cleavage planes. Thus the PIA
model needs to be modified to consider the effects of normal tensile stresses on a multiplicity of
planes, or at least the most significant planes, leading to

P =1 —EXP{_ j [Z[%] de} (53)
X o<hkl>

where 6, is the normal stress in the <ik/> direction, Gowi> 1S the scale parameter or unit
strength in the <hk/> crystal direction. The summation is taken over the most significant planes
(i.e. the weak cleavage planes and those subjected to all the principals). Two extreme cases of
Equation (53) can be considered: that in which a single term in the summation dominates
reliability and that in which all normal tensile stresses reduce reliability. The first case occurs if the
stress distribution consists of a large tensile stress oriented on or near a weak cleavage plane; the
term in the summation is the maximum ratio of normal stress to scale parameter. The second
case is the limit in which the summation term becomes an integral over all crystal directions. This
would appear conservative (i.e. over estimate the probability of failure) based on isotropic data,
even though the normal stress component in any direction should reduce the reliability associated
with three-dimensional flaws. Such an effect was proposed by Weibull for isotropic materials
(Weibull 1939) via the normal stress averaging technique which was given previously in Equations
(38) and (39).
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Use of Equations (38) and (39) requires the crack density coefficient for a multiaxial stress state,
k.ps; on the stressed, free surfaces of the crystal. For two dimensional isotropic cases, the
approach of Gross and Gyekenyesi (Gross and Gyekenyesi 1989) might be used to estimate a
kps value for an anisotropic material by averaging the uniaxial crack density coefficient, ks, over
the <hkl> directions of a contour in the (mno) plane of interest

Jk ac

-ws — C(mno) . (54)
ij
C(mno)
The limits of integration depend on the symmetry of the (mno) plane. For multiple planes (i.e., a
three dimensional body), a series of terms is required in Equation (53), or it can be solved on an
element-by-element basis. This leads to a solution of the form

— k,
k — M (55)

e
Ty

where pr: is an effective crack density coefficient for anisotropic surface subjected to multiaxial
stresses. The obvious problem with this solution is that stresses and crack density coefficients
are averaged instead of being matched on a plane-to-plane basis. Further, a function describing
strength in all directions in the plane is required.

For a plate in biaxial flexure, a single free (mno) surface is stressed in tension and the contour
integral is taken over the <iki> directions. If the (100) plane is considered, the strength repeats

every quadrant and the strength in a <hk/> direction might be described by
2 T
O (100 seit> (©)= 0,155 cos (20)+06, 1. 0052(29 + E) (56)

where @ is the angle from the <100>, 65.100. and On<110> a@re the unit strengths, respectively in the
<100> and <110> directions. In order to determine if the effects of multiaxial stresses on the
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reliability can be predicted, more complex testing such as torsion or biaxial flexure is required. For a
three-dimensional surface, a more general equation is required.

A more general approach for anisotropy might be to integrate the ratio of strength to stress about the

unit circle
P, =1 —exp{— J. h . ]dA} (57)
A
with
J Grz<lz/(l> dC
="\ O

n ’

Cj dc

where N would represent an average ratio of normal stress to strength for a surface, which must
be calculated element by element, and is less than unity (Batdorf 1978). Although this approach
only considers effects of normal stresses, an effective stress could replace the specified normal
stress. Replacing the normal stress with a mode 7 equivalent stress derived from any appropriate

fracture mechanics failure criterion leads to

1 O s |
P,=I-exp —j;f(?”ﬂ] dC dA (58)
A 0 o<hkl>

where and oy.,<.» is the mode I equivalent stress parallel to the <iki> direction and normal to the
(hkl) plane at a location. The same function is derived in a more rigorous fashion in the next

section.
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3.2 A GENERALIZED WEIBULL RELIABILITY MODEL FOR BRITTLE
MATERIALS WITH STRENGTH AND ELASTIC ANISOTROPY

A general reliability model for homogenous brittle materials with strength anisotropy can be
derived by modifying the approach of Thiemeier et al. (Thiemeier 1991) to consider fracture
toughness, and thus strength, as a variable of orientation in the probability density function. The
probability of failure of a brittle material containing randomly distributed surface flaws is related to
the probability that a crack of a given orientation exists at a given location and the probability that
the flaw exceeds the critical dimension for failure. If the cracks are assumed to be randomly
distributed in orientation and location via a uniform distribution, the probability of a crack existing
at a location with a particular orientation is

1 1
=— dA—deb 59
Pag Ar T (59)

where A7 is the total surface area of the body and z is the total range of possible crack angles.
The probability that a given flaw causes failure is the probability that the randomly distributed
crack size (i.e. no variation in the crack size distribution and Weibull modulus with orientation) is
greater than the critical crack length a.on that plane:

P, =pla>a,)=[f,(a)da (60)

where f, is the probability density function describing the crack size distribution and 4 is the
randomly distributed crack size. The critical crack size on any plane of an anisotropic material is
related to the fracture toughness by

K. 0)
ac = -22“_ (61)
Y, o @,x)
where K. (6) is the fracture toughness of the plane at angle 6, v, is the crack geometry factor, and

Oleq (6, x) is a mode / equivalent stress at orientation 6 and location x as defined by any of
applicable failure criterion for elastically anisotropic materials. Note that some of the failure
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criteria in section 2.5.2 are applicable to anisotropic materials as they are independent of the
elastic constants. Only the stresses and the stress intensity factor coefficients are necessary.

For a material with fracture toughness anisotropy, both the fracture toughness and equivalent
stress are functions of the crack plane orientation. Thus a. depends on the location of the crack
by way of the equivalent stress and on the orientation of the crack by way of the fracture
toughness and equivalent stress. The probability of a single crack causing failure in a component

is thus

P, =£Al£ﬂl Tfa(a)dade A (62)

T a, (9 ,:)

To solve Equation (62), a functional form for the crack size distribution needs to be assumed. If a

power function of the form

f(a)=Ca'g (63)
is used, Equation (62) becomes
T_ 1-g
szijlj_&_dgdq (64)
AT o 1-r

for ¢ > 1. The reliability of a component containing the above flaw is R, = (1 -P;, and the reliability

of the component for » flaws is
R, =(1-B)" (65)

The probability of » cracks actually occurring in a components area for an average crack
occurrence is given by the binomial distribution if the sampled areas are independent and have
equal probability of a crack existing. The binomial distribution can be approximated by the
Poisson distribution (Miller and Freund 1977) for a large sample area and a small probability of
crack occurrence in a unit area, which should be the case for dense, well made components with
small flaws. The probability of » cracks becomes:
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_4 "exp(— A1)

” (66)

n

where 1 is the product of the number of sampled areas and the probability of a crack existing in a
sampled area, or the expected (i.e. average) number of cracks. The probability of the component
surviving is the sum of the product of the reliability at any crack frequency and the probability of
that frequency occurring:

P = i p,R, (67)

n=1
Substituting Equations (64), (65) and (66) into (67) and using the equality

oo

in— = exp(x) (68)
=t 1!
leads to
P, =exp(-AP,) (69)
and
P, =1- exp(% { ﬂl]:(;‘i_: deA) (70)

The expected number of cracks and the area are not known initially. However, the total number
of crack in the total area is equivalent to the average number of cracks per unit area:

A 2 (71)
A, A

o

Also, because crack length is inconvenient to measure and strength “captures” the combination of
fracture toughness and crack length, Equation (60) can be substituted into (59). If the fracture
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toughness is written in terms of a reference strength and crack length (i.e. Kic (6)=0, (8)Y)Vr a),
then by substitution of (70) and (60) into Equation (69)

A, (17cam?( o, 0.%))
P, =1-exp _A_J.;-! ’:/ 2{ ;"0 @) dé dA (72)

o

where m=2g-2. Further reduction is attained by redefining the initial crack density as

ma,

f(a)= W
(73)

mam/z
C=—2
2

(4

yielding the reliability function for anisotropic materials

R
A

o

P, =1—exp| — ;';”l]: O-I;;:((ee’—)x—) dodA |. (74)

This has the basic form of the Weibull function and is similar to the isotropic model given by
Thiemeier and those frequently use for polycrystalline ceramics, except that the reference
strength is a function of planar angle and any failure criterion defining coplanar crack extension
can be used. A function describing the strength as a function of angle on the surface(s)
considered is needed along with the stress state in the anisotropic body. Because of the symmetry
of a cubic material, the fracture toughness, strength and elastic properties repeat every quadrant
and the second integral can be multiplied by a factor of two, and the integration taken from 0 to ©
/2. For a three-dimensional component, the finite element method (FEM) can be applied to
determine the stress state and perform the integrations. The element size must be sufficiently
small so that the stress state is nominally constant, and any curved surfaces can be descritized to
planes effectively. The model assumes coplanar extension can effectively occur on any plane.

The above analysis can be extended to volume flaws by modifying Equation (58) to
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P =—dV—do — 75
1 v, YT dag (75)
leading to
17[/22]1/22 oo
P=l—|=|= a)dad@dp &v . 76
=f [5 12 [ramados 79

where V7 is the component volume and the other variable are as defined previously.

The reliability formulation in Eq. (74) is very convenient as it allows the use of any fracture
mechanics failure criterion that is applicable to elastic isotropy or anisotropy as necessary, a
variety of crack shapes and a scale parameter defining the strength as a function of orientation.
In order to apply the reliability function, a mode 7 equivalent stress failure criterion applicable to

elastic anisotropy is required.

3.3 A FAILURE CRITERION FOR ELASTICALLY ANISOTROPIC MATERIALS

All of the mode I equivalent stress formulations given in section 2.5.2 are applicable to isotropic
and anisotropic materials except that for the coplanar energy release rate. A mode J equivalent
stress failure criterion for the coplanar energy release rate can be derive for an elastically
anisotropic material by accounting for elastic anisotropy. The mode I equivalent energy release
rate can be defined as (Paris and Sih 1965)

Gy =G, +Gy 7)
with
K; M+l Ky,
Gl =—ES221m —‘ul’u_z— and GII =ES11 Im{lul +Au’2} (78)
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where the S;’s are the single crystal elastic constants (compliances), K; and K are the mode /
and 17 stress intensity factors defined as K, = o,Vma and K;; = tVna where « is the crack size, o, is
the normal stress and is the shear stress on the specified plane. The quantities u; and u, are
the roots of the complex equation (Lekhnitskii 1963)

S11“4—2S16:u3+(2S12+S66)H2_2S26‘U'+S22 =0. (79)
The equivalent stress can be derived by defining the mode 7 equivalent stress intensity as
Kioy = GpogVma . (80)

Substituting Eqgs. (78) and (80) into (77) leads to

) S Im(‘L[ +‘LL,)
O, =.l0—7> 1 o : (81)
e \/ AP Im[(,u1 + U, )/(:ul,uz)]

Egs. (56), (74) and (81) define energy based, probabilistic fracture mechanics functions for the
reliability analysis of an elastically anisotropic, brittle surface such as a plate. For a volume
analysis, more general equations are required. In order to conveniently make strength predictions
with Eq. (74), it is necessary to reformulate it in terms of strength instead of probability.

3.4 RELIABILITY PREDICTION FORMULATIONS

3.4.1 Isotropic Materials

For the case of strength isotropic, Equation (74) reduces to

m

P, =1-exp —A]—J.é]a %O,x) dodA | . (82)
oA 0

o

For the specific case of measured test specimen or component data, the probability formulation is
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P, =1-exp| - T nax (83)
Oy

where oyax is the maximum stress sustained by the specimen or the strength. The scale
parameter, o, in Equation (35) and (82) can be determined by equating the general form of the
Weibull equation (i.e. Equation (82)) to that for the specific case of test specimen data (i.e. 83)
and solving for the scale parameter:

¥ 110, 6x)
1—exp| — Goax. =]—exp ——J.-J—j ﬁ dOdA (84)
69 Ao An. 0 Go
or, as the scale parameter is a constant
m 1/ m
1 017%
c,=0,|— f —_[ dOdA (85)
Ao A T 0
or
0, =0,Al'" (86)

where A, is the “effective area” of the specimen and o, is the characteristic strength of the test
specimen, or the stress for which for 62% of the specimen would fail. Generally the PIA model is

employed and oy, in Equation (85) replaced with the principal stress or stresses as appropriate.

Although Equation (82) can be used to predict the failure distribution of a biaxial test specimen or
a component from uniaxial test data, for verification purposes it is more convenient to use
characteristic strength values associated with the biaxial flexure test specimen, because the
strength was experimentally measured. Rearrangement of Equation (85) provides the function
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~1/m

=0, :!' %I( ]mdedél . (87)

0

If Equation (87) is equated to itself for two different failure strengths and effective areas, a
convenient scaling equation for a given probability of failure can be derived:

O1/Cgs = (Aez/An )1/ " (88)

where o4 is the characteristic strength corresponding to effective area A,.. The effective area for all
the surfaces subjected to tension in three- or four-point flexure specimens is (Nemeth et al. 1990)

I+m(S. /S ) mwW
A = ol ]+ B+W 89
. [ Y ][ B+W}[ Is, (89)

where m is the Weibull modulus for the surface flaw population, S, and S; are the outer (support)
and inner (loading) spans respectively, and B and W are the depth and height of the beam

respectively.

Equations (88) and (89) are generally considered capable of predicting four-point strengths from
three-point strength data for brittle, isotropic materials such as polycrystalline ceramics and glasses.
They are noted here because they constitute a convenient approach for verification exercises.

Note that the use of the maximum stress in Eqgs. (83) and (84) is an arbitrary, but convenient and
common choice as most engineering comparisons consider the maximum stress to represent
strength, etc. However, Fessler and Fricker (Fessler and Fricker 1984) use a nominal stress to
compare plate specimens with and without friction and generated a nondimensional value of
effective area by normalizing to the total specimen surface area or volume.

For the POR biaxial flexure test configuration and the PIA failure criterion, the effective area of the
disk test specimen can be calculated from
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_4n@+v)(R Y[ 2R2@+v)+R*(1-v)
Ae:Tm‘(E)[ G+v)i+3) ] %)

within 1.5% for m > 5, v > 0.17 and within 1% if R;/R;< 0.9 also. For the disks tested herein, Ae =
227 mm®.  For the three-point flexure specimens tested herein, Ae = 2.06 mm?, implying an
effective area change of ~110:1. The nominal tensile surface areas of the WC POR test
specimens and the size “A” 3-point flexure specimens were 40 mm? and 2027 mm?, respectively.

3.4.2 Anisotropic Materials

For the anisotropic case, equating Equation (82) and (83) leads to

—1/m

_ 1 ¢17% 1 0o, (9’;) i
o itz s oo e | 04 0

with the scale parameter unfactorable from the integrand because of its functionality. However, if the
PIA approach is applied, the equivalent stress and scale parameter are nonzero in the principal
direction only, and

~-1/m

c, =0, 1% ! %Z(%]’;@aﬁ (92)
or
o, =0,(6, AL-[ [M]m dA B (93)
o A C)-MAX
or
0,0,)=0,A"" (94)
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where 6, is the orientation of the principal stress and the measured characteristic strength. The
corresponding scale parameter is independent of the scale parameter in other directions. This is
analogous to the isotropic case and scaling of uniaxial data for a specific orientation can be done as

usual

(0-91 /692 )<hk1> = (Ae2 /Ae1 21171; (95)

where oy, is the characteristic strength corresponding to effective area A,; in the <hki> direction of
interest. For more general failure criterion, the scale parameter can be estimated from uniaxial
characteristic strength data by noting that the equivalent stress is a function of the first principal
stress and trigonometric functions. Thus, the area and unit circle integrations can be separated by
grouping the terms as functions of angle or the Cartesian area coordinates

-1/m

oy = Aij[% dA X’Tli[ Gf ((99))] a6 (96)

oA

or

—1/m

o, = %;(% ]mde (97)

where f{6) is the failure criterion written in terms of unit, uniaxial principal stress. Note that for the
uniaxial case, the integrand in (97) is identical for any specimen size and once again equation (89) is
applicable. Further, as Equation (97) can be divided by itself for two different uniaxial volumes and
simplified to yield Equation (88), implying that characteristic strength is independent of failure
criterion for uniaxial cases and computation of the scale parameter unnecessary. However, the
scale parameter is still required for prediction of multiaxial stress cases and Equation (95) needs to

be solved for o, for the desired failure criterion.
The functional form of the scale parameter is unknown in Eq. (96). However, because it nominally

represents a scaled value of the characteristic strengths, it can be assumed to take the same form.
For the (100) plane the scale parameter in any <iki> direction can be represented as
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O o0 100 <hi> (@) =0 00> cos’ (2@)+ O o<i10> sin’ (2@)- (98)

where @ is the angle from the <700>. Note that the effective stress functions in Equations (29) —
(32) are integrated about the unit circle from the first principal stress whereas the strength function
has an absolute reference to the crystal orientation. Thus, a phase angle accounting for the
difference between the starting angle for the scale parameter function and the orientation of the
principal stress is needed. The general function in terms of the angle 6 from the principal stress

becomes

O o100 siir> = O oct00> cos® (29 + 2(15)‘*' O oci10> sin® (29 + 2@) (99)

where the angle ®is 0 and © = 9 for a principal stress oriented in the <100> direction. For a
principal stress orientated in the <770> direction & = 7/4and © = 6. For experimentally measured

characteristic strength data, Equation (97) can be written as

-1/ m

A /2 9
Ooc100> = . J.( f( ) ] (100)
6

and

—1/m

[,A" f6) Y
Coctios = 7!( (0+7z/4)) do (101)

and the two equations used to solve for the unknown values Oo<100- aNd 0,.110- based on any failure
criterion. For the normal stress criterion with a unit stress,

f(@)=cos?6. (102)

For the maximum coplanar energy release rate with a unit stress
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> 172
f(0)=(cos4 6+ L sin’ 29] - (108)

1
For maximum noncoplanar energy release rate with a unit stress

5 P 1/ 4 .
f(9)=(cos'89 +—g—§%cos49 sin® 20 +%§%sin429 ) : (104)

1 1

In Egs. (102) — (104) 6 is the angle from the first principal stress and ¥; and Y, are the mode 7 and
Mode /I SCIFs as defined in section 2.5.2.

Eq. (91) defines a function for the prediction of the characteristic strength of a component exhibiting
strength and elastic anisotropy. The required inputs are the scale parameter constant in Eq. (99) as
determined by simultaneous solution of Egs. (100) and (101), and an equivalent stress as defined in
section 2.5.2 or 3.3.
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CHAPTER 4: EXPERIMENTAL PROCEDURES: MATERIAL PROPERTIES
AND VERIFICATION TESTING

In order to assess the ability of Equation (74) to predict the strength of isotropic or anisotropic
materials subjected to multiaxial stresses, the uniaxial and biaxial strengths of an isotropic and an

anisotropic material were measured.

4.1 TEST SPECIMEN PREPARATION

4.1.1 Isotropic Material

The isotropic material used was a commercial grade WC with a 6% nickel binder (KZ801,
Kennametal Corp., Latrobe, PA). Billets measuring 25 mm in thickness were ground and lapped
on one face in order to provide a surface with minimal machining damage and isotropic strength
behavior. Lapping was used because test specimené that are manufactured with typical uniaxial
‘grinding procedures (e.g. ASTM C 1161 1990) and subsequently subjected to multiaxial stresses
tend to fail from grinding damage rather than from inherent processing flaws.

4.1.2 Anisotropic Material

Single crystal billets of a NiAl alloy manufactured commercially’ were mounted on goiniometers
and oriented by X-ray diffraction. Flexural specimens (ASTM C 1161), measuring 3 by 4 by 45
mm in height, depth and length, respectively, were then cut from the billets along the <100> or
<110> axes by electro-discharge machining (EDM). The secondary orientation was not controlled
relative to the beam surfaces. The resulting surfaces were sanded with 400 grit silicon carbide
paper and chemically milled in a solution of phosphoric and nitric acid to remove the remaining
EDM damage. The chemical milling procedure follows (Walston 1995):

1. Mix a solution of 85% phosphoric acid and 15% nitric acid.
2. Heat to 125°F while stirring constantly.

? AFN 12 - General Electric Aircraft Engines, Evendale, Ohio.
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3. Submerse the specimens in the solution, making sure that the surfaces of interest are exposed
to the stirred solution. Leave the specimens in the solution for 15 minutes.
4. Rinse the specimens in water.

The specimen were then inspected at ~30x magnification with an optical microscope, and if
necessary the sanding and etching processes were repeated until no EDM damage was visible on
the tensile or side surfaces of the specimen. An example of EDM damage on the surface of a

specimen is shown in Figure 4.1.2.1.

Disk specimens for biaxial flexure were cut from a billet and prepared in a similar manner

4.2 MEASUREMENT OF ELASTIC PROPERTIES

The elastic modulus and Poisson’s ratio of the WC was measured by applying the impulse
excitation technique (ASTM C 1259 1994) to the ten 50.8 mm diameter, 2.2 mm thick disk test

specimens.

In order to determine if the elastic properties reported by Wasilewski or Rusovic’ and Warlimont
(Wasilewski 1966, Rusovic’ and Warlimont 1977) for binary NiAl were sufficient for calculations on
this alloy, the elastic modulus was determined along the <100> and <110> crystal directions. The
impulse excitation technique (ASTM 1259 1994) was used on 46 <100> and 65 <1 10> flexural
beam specimens.

4.3 UNIAXIAL STRENGTH TESTING

The uniaxial strength of the WC was measured in three-point flexure by using twenty-nine size “A”
test specimens measuring 1.5 by 2 by 25 mm in height, depth and length (ASTM C1161 1990).
Flexure testing was used because it is relatively simple, requires little test material and has been
standardized for brittle materials (i.e. ceramics) (ASTM C 1161 1990). The tensile surface of the
test specimens corresponded to the lapped surface of the billet.
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(a) Overall view 100 um

(b) Detail 10 um

Figure 4.1.2.1: EDM damage along the surface of a flexural test specimen: (a)

overall view and (b) detail. EDM damage was not removed prior to chemical
milling.
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The flexural strengths of the NiAl <100> and <110> beams were measured in both three and four-
point flexure. Measurement were made in both three and four-point loading because the different
volumes subjected to stress provide a means to verify the model for the simple case of uniaxial
stresses. Size “B” specimens (3 by 4 by 40 mm in height, depth and support span for three-point
loading; a 20 mm loading span was used for four-point loading) were used. The strength was
calculated from

F(s,-S)

BW~

where F is the failure force, S, and S; are the outer (support) and inner (loading) spans

ex 3
Surs =5 (105)

respectively, and B and W are the depth and height of the beam respectively.

4.4 BIAXIAL TEST RIG DESIGN AND ANALYSIS

A biaxial test rig employing the P-O-R configuration was designed based on descriptions given in
the literature (Rickerby 1977, Shetty 1983). Based on the discussion in Section 243, it was
thought that a neoprene membrane or no membrane would provide the best results, particularly
for NiAl because it is relatively strong, has a relatively low elastic modulus as compared to
ceramics or steel, and will exhibit larger deflection at failure for a given test specimen

configuration.

The membranes used previously to contain the pressurization medium on face of the test
specimen were replaced by a nitrile O-ring retained in a groove. A cross section of the test rig,
which accommodates 25.4 mm diameter disks is shown in Figure 4.4.1. The rig consists of a test
chamber, support ring and cap, extensometer and oil inlet and drain ports. The desired
pressurization cycle is supplied to the test chamber and specimen via a servo-hydraulic actuator
connected to a closed loop controller. The feedback to the controller is supplied by a commercial
pressure transducer connected to the oil inlet line.

The test chamber and cap are 304 stainless steel, and the support ring is cold rolled, half-
hard copper or steel depending on the pressure required. Copper, being somewhat ductile,
accommodated any minor misalignments or specimen curvatures. Detailed drawings of the
rig are given in Appendix A.

Ideally, the test rig applies a uniform pressure on the supported surface of the disk test
specimen, and allows it to deflect without rotational or sliding restraint at the support ring. The
resulting biaxial stress state provides a means to estimate the biaxial strength of a material,
provided that the stress state generate within the specimen can be calculated.
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Figure 4.4.1: Schematic of the biaxial test fixture.
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4.4.1 Stress State in a Pressurized Plate: Okubu’s Approximate Solution

The displacement solution for a simply supported, circular, special orthotropic plate of unit radius
and thickness subjected to uniform pressure was solved by Okubu (Okubu 1949) in the form of a
series. An empirical solution for a plate of unit radius, similar in form to the isotropic solution
(Szilard 1974), was also proposed:

q 2Y.* 2
= 1—r k™ — 106
et (1=rf )i =) (106)
where
D* = —;(3D,, +2D,,+4Dy +3D,,) (107)
P - /D, +10D,, +12Dy +7D,, (108)
2(D11+2D12+D22)
and
> S, ? S,
1T oo o oz Pt
12S11S12_512 72511512—512 (109)
> =S, 1

D, = , D
© o 125,8,-82" "% 128,

where g is the applied pressure, ¢ is plate thickness, r is the position of interest and the S;'s are
the material compliances. The plate rigidities, Dj’s, and associated functions are written in the
more standard notation used by Hearmon (Hearmon 1961) instead of that used by Okubu (Okubu
1949). Note that Equation (106) was published by Hearmon (Hearmon 1961) for the general case

of a non-unit radius:

~_ 4 2_ 2Ypx_ 2
w=64D*<rp P2k =r2). (110)

where r, is the radius of an anisotropic plate. However, an r,> term is missing. For the general
case of a plate of variable support radius the displacement should be

wz= 64qD* (rpz —rZXk*rpz —rz). (111)

For the simpler case of cubic symmetry, the constants reduce to
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*cubic 1
D™ =z(3D11+D12+2D66) (112)

k*cubic — 7D11 +5D12 +6D66

(113)
2(D,,+2D,,)

Note that the effect of overhang is ignored in the displacement solution and the specimen radius
is set equal to the support radius. Because the symmetry of an orthotropic or cubic crystal is
orthogonal, the elastic constants are in Cartesian form and the stresses and strain need to be
determined in Cartesian coordinates. The strains and stresses are determined from the curvature
equation in Cartesian form and the usual strain-displacement relations for pure bending:

(114)

O =—2_[212(k" +1)-12x% — 4y7]

ox° 64D’

’w  —gq .

T [2r2 (k" +1)-12y7 — 44?] (115)
’w ¢

where : is the distance from the mid-surface of the plate. The stresses are determined from the

strains by (Hearmon 1961):

NASA/TM—2002-210519 68



O =% bﬂ&xg +by, 9y2
d%w d%w
O, =—=Z b,23x2 +b,, &yz (116)

whereb, =S,,/8,,S, =S,,, by, = 81/ 882 =S, b =1/S;and b, = =S5/ 8,8:~8,,. As the
plate is cylindrical, a description of the stresses in polar coordinates is more intuitive. The
Cartesian values at any point in the plate can be converted as follows:

0, =0, cos’ +0,, sin’ ¢ +0,, sin2¢
Cgo =0, COS° Q+0,, sin” ¢ —0,, sin2¢ (117)
O, = (622 —O‘H)sin(pcos(t)+0'12 cos2¢

where ¢ is the counter clockwise angle from the x axis. The resultant stresses as a function of
angular orientation in a (001) NiAl plate are shown in Figure 4.4.1.1. The stresses are a function
of both radial position and orientation, with the tangential stresses being greater than the radial
stresses at all locations except the plate center where they are equal. For any radius, the peak
tangential stress in the plane of the plate occurs at the <110> directions, whereas the peak radial
stress occurs along <100> directions.

4.4.2. Okubu’s Exact Solution

Because Eq. (110) is approximate, its accuracy is an issue for reliability calculations. The
deflection at any point in an anisotropic plate is defined as (Hearmon 1961, Timoshenko 1959)

b B 0%z 9%z
- +D =q. 118
" ox? ox?y? z oy* 1 (118)

Okubu defined the exact displacement solution for a plate with unit radius as

D

+2(D,, +2D,,)

w=w,+ R[fl(x+ik1y)+ Fa(x+ikyy)+ Cx* + Cox?y? + Cay* + Cpx* + Csy? +C6] (119)
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Figure 4.4.1.1: Stresses in a {100} plate of unit radius and thickness subjected to
a unit uniform pressure as calculated with Okubu's (Okubu 1949) approximate
solution.
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with

£ Ge+ik,y )=i A, cosh2n(o +iB’)
z (120)

f7 Ge+iky )=i B, cosh2n(e” +iB”)
2

and
b
k; = 1 7
2 12 2
(DZ +D, +{(D2 +D,) —D,D3}/ r
(121)
Y
k,= : 7
> 12 2
(DZ +D, —{(132 +D,) —D,Da}/
This lead to
2 oo
g :V = E(A" cosh2na’+ B, cosh2na”)cos 2nf8 +6C,+C, +2C, +(6C, —C, )cos 2B
X 2
2 oo
‘3 5= =2 (4,k7 cosh2na’+ B,kZ cosh2na”)cos 21 +6C, +C, +2C, —(6C, ~C,)eos2B  (122)
y 2
(9 2W - . 7 . ”\ - :
ER = —2 (A, k, sinh 2na’ + B, sinh 2na )sin 2nf + 2C, sin 23
2

on the boundaries of a plate with a unit radius. The A,’s, B,’s and C;’s can be determined by
applying the boundary conditions that the displacement and moments disappear at the edge of
the on the boundaries of a plate. The necessary functions are given by Okubu (Okubu 1949).
The terms ¢’ and @’ are dependent on the elastic constants only and can be derived from the
Cartesian to curvilinear transformation equations provided by Okubu:
x+iy = P

x+ik,y = c’cosh(a’ +ip’) (123)
x+ik,y =c"cosh(o” +iB”)

with c’cosha’ =1, ¢"sinha’ = k,, ¢" cosha”=1, ¢’ sinha’ =k, (124)
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for a plate of unit radius. The resultant stresses as a function of angular orientation in a (001) NiAl
plate are shown in Figure 4.4.2.1. The stresses are a function of both the radial position and the
orientation, with the tangential stresses being greater than the radial stresses at all locations
except the plate center where they are equal. For any radial position, the peak tangential stress in
the plane of the plate occur at the <110> directions, whereas the peak radial stress occurs along

<100> directions.

The stress resulting in a NiAl plate as calculated from the series and approximate solutions are
compared to the isotropic solution in Figure 4.4.2.2 for a (001) plate of unit radius and thickness
subjected to a unit pressure. The approximate and isotropic solutions predict higher stresses
(~10%) near the plate center, with the isotropic solution decaying more rapidly than either of the
anisotropic solutions. Thus, for an anisotropic plate, greater care in preparation of the test

specimen edges is needed.

As Okubu’s solutions were derived for a plate of unit radius, thickness and applied pressure,
generalization for application to real specimens is needed.

4.4.3 Generalization of Okubu’s Solution to Variable Radius

For a disk of any radius, the equations defining the boundaries and displacement are function of
the radius. The terms relating ¢’ and @’ in Eq. (124) become

¢’cosha’ = r,, ¢’sinh a'=rp k,, ¢"cosha’= r, , ¢”sinh a'::;, k,. (125)
This leads to

cosh(2n+2)a' , ] )i ) ,
2n+2)B’ - h2 2
' (2n+2X2n+J)COS( "t )ﬁ [(2n+])2n +2n(2n—1):'cos nacos 2nfs
W=?ZA,,
2

cosh(2n -2’ , +
h(Zn ) 2)cos(2n -2)B
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Figure 4.4.2.2: Comparison of the stresses in a {100} plate of unit radius and

thickness subjected to a unit uniform pressure as calculated with

isotropic and anisotropic solutions: <100> direction and (b) <110>

direction.
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cosh(2n+2)” , i ] i )
Cnt 2Yonsncosen+2)8"~ h2 2
’ o (2n +2X2”+1)COS( n+2)p [(Zn +12n " 2n(2n —I)JCOS norcos2nf
c n ”
7; +MC‘OS(ZH —Z)ﬁ' A 26)

@n-1)2n-2)
+Cx* +C,x7y? +C;y* +C a7 +Csy? +C,

as in the original solution. The condition that w vanishes at the plate boundary r, gives
(3C1+Cy +3C3)ry +4(Cy +Cs)r2 +8C4 = 0

1 1
(C1=C3)ry) +(Ca—Cs)r? +Ec’2A2 cosh2a’ +1—7€"sz cosh2a” =0 (127)

1 1 1 ,» 1 1
g(CI -G+ C3)r;,1 - Eac'zAz cosh4a’— %c""Bz cosh4a” + %c"@ cosh4a’ + %0”33 cosh4a” =0

LA (1 + ! L+ Anes ¢’? cosh2na’
2n |2n-1 2n+1 2n-1 2n+1 .

) ., ” ] A
+i n=l _ U + 1 n + n+l C 2 cosh 2na” = 0
2n (2n—-1 \2n+1 2n-1 2n+1

The condition that the moment also vanishes at the edge gives
Dl D3 2
3(3D, + D, )Cy + = +3D;+2Dy+ S e+ 3(3D5+D,)C3 {ry +2(Dy + D,)Cy + 2(D, + D5)Cs =0,

(12D1C1 - 12D3C3)I'§ + 2(D1 - D2 )C4 + 2(D2 - D3)C5

1 1
+ {E(D1 - D,)coshda’ — E(D2 — D3)k{ coshda’ — Dyky sinh4a’}A2

1 1
+ {E(Dl — D, )coshda’ — —2-(02 - D;3)k3 coshda” — Dyk, sinh4a”}32 =0,
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{3(01 - D), - (@ -D; +2D, }‘2 +3(Ds5 ~ Dz)Q}’}f
+ A, {1)1 +D, - (D, + D )kf}cosh4a' + B, {01 +D, - (D, + D3)k22}c05114a"

1 , ,
+ A3{3 (D; = D;)cosh6a’ - —ﬁ—(Dz — D3 i cosh6d’ — Dk, sinh6a }

1
+ B; {3 (D; - D;)cosh6a” - é (D; — D3 )3 cosh6a” — Dk, sl'nhéa’} =

Al {M cosh(2n + 2)a’ - @ k? cosh(2n + 2)a’ = Dk, sinh(2n + 2)a'}

{D +D; — (D, + Dy ik} }cosh 2nd

+ A, 1{([)1 7)cos/1(2n )a D3 ]&1 cosh(2n - 7)a + Dk, smh(Zn - 7)a}

B, {@ cosh(2n +2)a” - @ k3 cosh(2n + 2)a” — Dk, sinh(2n + 2)a'}

+ B, {DJ +D, — (D, + Dy ) }cosh 2na”

+ B”‘I{M cosh(2n - 2)a” - DZ—;D—3 k3 cosh(2n — 2)a” + Dk, sinh(2n — Z)a’} =

and the general curvatures for any radial position become

oo

2
(Z ;4/ Z(A cosh2na’cos 2nB’ + B, cosh 2na” cos 2nf ")+12C,x2 +2C,y% +2C,
> S

n

2 -
(Zy —Z(Ank cosh2no’cos 2nfB’ + B, k2 cosh 2na” cos2nf3 )+ 2C,x2 +12C 2 +2C,
n=2

2
gx&y = ;<A,,/< sinh 2no’sin 2nf’ + B,k sinh 2na” sin 2nf3 )+ 4C ,xy

or in curvilinear coordinates
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2 oo
C;x?) = Z(A” cosh 2na’cos 2nf3’ + B, cosh 2na” cos 2nB”)+ (6C, + C, )r?+ 2C, + (6C, - C,)r%cos2B
n=2

2 s oo
ow__ A,k cosh 2na’cos 2nB’ + B, k2 cosh 2no” cos 2n” )+ (6C . + C, I2
&yz n nv2 3 2 (130)
n=2

+2C; - (6C, —C,)r?cos 2B

2 oo
; ;"y ==Y (4,k; sinh 2n0"sin 2np’ + B,k sinh 2nc:”sin 2nf”)+ 2C ,r° sin 28 .
X n=2

The constants A,’s, B,’s, and C,’s are noted to be functions of ¢/f and various powers of r,. Thus
the ¢, r and r,, terms can be factored from the curvature equations and the curvatures written in a
form more typically used to describe plates. This also allows the constants for a given crystal
system to be determined only once by setting the terms to unity in Equations (109), (118), (125),
(127) and (128) (i.e. solving Okubu’s boundary equations). The curvatures in a general format

with ¢, r and ¢ factored become

d’w g’_é z(A” cosh2na’ cos 2nB’ + B, cosh2na” cos 2nB”)
£

.2
+(6C,+C, +(6C, - C,)cos 2B) =+ 2C,
.

p

I’w _ qr, (_Z (Ank]2 cosh2no’ cos2nf’ + B k? costha’cosZnﬁ”) (131)
2 _.IT n=2 P
% +(6C, +C, ~(6C, - C,)cos2B) =+ 2¢,
r
p
aZW qrﬁ — . ’ . ’ s r . ” "2 .
ﬁ=—3—- —z(A”kl sinh 2n¢o"sin 2nf"+ B, k, sinh 2no” sin 2nf3 )+2C2 —-sin2f3
X t > r,

and the displacement function becomes
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h 2 2 ’ ’ 1 1 ’ ’
{c’z i g:jzﬁ%cos@n +2)B _[(Zn vy + 2o 7):, cosh 2na’ cos 2nf8
—Y4
4 =" h(2n -2’ ,
2 (cz():_*g)(’;n%cos(,?n—ﬂﬁ
cosh(2n +2)” , 1 1 ” ”
q|. o |Crnr2Yen+n) cos(2n +2)p [ Gn+1n 2n(2n-1)] cosh Znar” cos 2ns
W=+ 2B n(on- 2 (132)
=2 | CoShenzap cos(2n-2)B”
(en- Xen- 2)
+Cox* +Cx2y2 +C,y° +(C4x2+C5y2)'1,2 +Cor?
in Okubu’s format or
r ‘ ) ]
cosh(2n+2)x cos(2n+2)5'+ cosh(2n—2)x cos(2n-2)"
2(1 Az)iA @n+2)2n+1) (2n-1)2n-2)
o n=2 ! 1 1 ’ ’
- @nr1on + 27Gn D) cosh 2no’ cos 2nf3
cosh(2n + 2)(1 cos(2n +2)B"+ cosh(2n — 2)0: cos(2n 2)8”
o 5 ) - @n+2)2n+1) @n-1)2n-2)
w=12 +2(1-£3 %Bn . ) ) (133)
8t "= - + cosh 2no” cos 2nf3
2n+ 12n 2n(2n - 1)
4
+{(C1 =C2 +C; )(cos 4B +3)+ 4(C, —C; )cos 28 +4C, e
l'p
2
+4{(Cy —C5)cos 2B+C, +Cs };—2+8C6
L 2 ]

in curvilinear coordinates only and a form more similar to that used to express the displacements
of circular plates.

The constants for both NiAl and an orthotropic graphite epoxy composite are given in Table
4.4.3.1. As can be seen from Table 4.4.3.1, the solution converges rapidly, especially for {100}

plates of NiAl. The computer code used to calculation the constants in given in Appendix B.

Note that Okubu’s model is capable of analyzing only {100} or {110} plates and cannot be used for
generally anisotropic plates (e.g. {111} or {51 1} plates) because they have fully populated stiffness
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matrices and exhibit bend/twist coupling which complicates the elastic solution due to ill-defined
boundary conditions. However, fully anisotropic plates are of interest because they are more
representative of a complex component. Thus, the finite element analysis method with gap
elements at the supports might be used for analysis of such general cases. The gap elements
should account for “lift off” from the supports as necessary. Another minor complication with
Okubu’s solution is that it does not consider the stiffening effect of overhang, which occurs when
the plate is larger than the support. Practically, overhang is necessary to prevent the test
specimen from falling off the support and to minimize the tangential stresses at the test specimen
edge and thereby avoid edge failures. Based on the isotropic solution, if the support diameter is
within 95% of the specimen diameter the error in the maximum stress is less than 2% and if the
support diameter is within 90% of the test specimen diameter the error is less than 4%.

Table 4.4.3.1: Displacement solution constants (x10°®) for NiAl and graphite/epoxy plates of unit
thickness and radius subjected to a unit lateral pressure.

NiAlL
S2=81=1.0428, S;= -0.421, Ss= 0.892 (x 10 m’/MN) (Wasilewski 1966)

C C, C; C, Cs Cs A, B, As B;
1.392 2.009 | 1.392 | -7.253 -7.253 | 5958 | 0.474 | -0.105 10" | 107
Graphite Epoxy:

Sy= 0.6667, S2:= 11.11, 51> = - 0.2000, Ss= 14.08 (x 10° m*/MN) (Lee and Saravanos 1995)

C C, C; Cs Cs Cs A, B, A; B;
2.741 9.046 | 4.080 | -15.52 -16.34 | 12.24 | 0385 [ 0.385 | 0.079 | 0.079

4.5 BIAXIAL RIG VERIFICATION
4.5.1 The Isotropic Case

Ideally, the test rig will generate stresses described by simple plate theory. A comparison was
made between isotropic plate theory (Szilard 1974) and the stresses measured with stacked,
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rectangular strain gage rosettes® placed at eight radial positions on the tensile surfaces of two
4340 steel disk test specimens as shown in Figure 4.5.1.1. The strain-gaged biaxial flexure test
specimens were inserted in the test fixture, pressurized and removed repeatedly while the strain
was recorded as a function of pressure. The average of at least three slopes, as determined by
linear regression of strain as function of pressure, were used to calculate the mean strains and
stresses (Measurements Group Tech Note TN 509 and TN 15). A maximum pressure level of
6.90 MPa (1000 psig) was deemed adequate because the strains developed approached the
strain limit of the gages and the errors were noted to decrease as the pressure increased.

Because the calculation of stress from strain via constitutive equations requires the elastic
modulus and Poisson’s ratio, measurements were made by the flexural resonance of the disk test
specimens (ASTM C 1259 1995). The estimated elastic moduli and Poisson’s ratio were 204.0 +
0.4 GPa and 0.29, in good agreement with handbook values (CINDAS/USAF 1997).

During pressurization cycles, the rig was noted to exhibit a significant hysteresis when the support
ring was not lubricated. The loading slope was very linear and the unloading cycle very nonlinear,
particularly near the load reversal. However, if the specimen - support ring interface was
lubricated with an anti-seizing compound®, the hysteresis was substantially reduced and the
strains increased. This behavior can be explained by the specimen slipping across the support
ring during loading but sticking briefly upon load reversal. Because strength measurement only
involves the loading slope only, loading data was regressed for comparison to plate theory. The
slopes of the loading curves typically exhibited correlation coefficients greater than R’ = 0.999.
The application of hydraulic oil to the specimen - support ring interface had little effect on the
measured stresses, as shown in Table 4.5.1.1.

For the lubricated condition and a pressure of 6.90 MPa agreement between plate theory and the
measurements was within “~1% at the disk center, within ~2% at 55% of the support radius and
within 9% at 75% of the support radius. In general, the errors increase with increasing radial
position, particularly for the tangential component. The results are summarized in Table 4.5.1.1
and shown in Figure 4.5.1.2 along with 95% confidence intervals.

3 Gage designation WA-06-030WR-120, Measurement Group, Raleigh, NC.

4 Never-Seez, Never-Seez Compound Corp., Broadview, IL.
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Figure 4.5.1.1: 4340 steel plate with strain gage rosettes attached.
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The significance of the differences between the plate theory and the measured stresses can be
assessed by estimating the standard deviations and confidence intervals of the measurements.
The standard deviations of the strains and stresses were calculated from the apparent strain
variances by applying a truncated Taylor series approximation (Haugen 1980) to the transverse
sensitivity correction equations, the strain transformation equations and the stress-strain relations.
For a rectangular strain rosette, the standard deviations of principal stress, principal strain and
principal strain uncorrected for transverse strain errors are

E 2 . 2em2
$Dg, == sDZ +v s,

E 2an2 2

SDg, =—— L SD; +5D7
1-v,k, > PP
SDe, = T2 VSDE, HRISD,

. \2 A . \2 2
1l g;-¢ 282—81—8 ] €.-—¢
SD; = [——1——2] SD? +(——iw§ +(—J_r . 2] SD? (134)
% V27 1 B 2 ;

B=(é1 _éz)z +(2§2 -&, _és)z

where E and v are the elastic modulus and Poisson’s ratio of the test material, v, is Poisson ratio
of the strain gage manufacturers calibration material, is the transverse sensitivity of the strain

gage, £ ,¢,,¢, are the apparent strains and SD,; is the standard deviation of the x; variables:
5 pand éq being the uncorrected principal strains, €,and €, being the corrected principal strains,
and o, and o, being the corrected principal stresses. The elastic constants in Equation (134)

are assumed to be exact for a single test specimen.
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Figure 4.5.1.2: Measured and theoretical stresses for a 4340 steel disk as a
function of normalized radial position. Error bars indicate the 95% confidence
intervals.
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Table 4.5.1.1: Measured stresses, standard deviations and theoretical stresses for a 25 mm
diameter, 4340 steel disk subjected to 6.90 MPa uniform pressure.

Radial Position Radial Stress, MPa Tangential Stress, MPa
Percent of Percent Percent
Support Theory | Measured® | Difference | Theory | Measured® | Difference
21 [2]
1.7, Unlubricated 465 418+0.6 -10 465 432+0.9 -7.0
33, Unlubricated 415 393+0.2 -3.3 436 409+0.3 -6.4
43, Unlubricated 377 348+0.3 -6.1 415 391+0.4 -5.8
55, Unlubricated 318 278+3.6 -12 382 336+2.3 -12
69, Unlubricated 237 209+3.6 -9.2 335 311+0.1 -7.1
75, Unlubricated 194 162+1.3 -16 311 265+1.3 -15
1.7, Oil 465 418+2.9 -10 465 432+1.6 -7.2
33, Oil 415 398+2.7 -3.9 436 311+£2.9 -5.0
43, Qil 377 351+£3.2 -6.9 415 396+1.3 -5.2
56, Qil 318 277+1.5 -13 383 336+1.8 -11.2
69, Oil 237 211+0.9 -1 335 310+1.5 -7.4
75, Oil 194 161+0.6 -17 311 266+0.6 -15
1.7, Anti-Seize'" | 465 459+2 .2 -1.3 465 470+3.0 1.1
33, Anti-Seize 415 414+3.2 -0.2 436 432451 -1.0
43, Anti-Seize 377 365+2.9 -3.1 415 410+4.8 -1.1
55, Anti-Seize 318 318+1.5 0 383 374+1.0 -2.0
69, Anti-Seize 237 231+5.5 -2.2 335 330+8.2 -1.5
75, Anti-Seize 194 205+2.5 5.6 311 305+2.7 -1.9
1.7, Clamping -4.9+1.0 0.9+1.0
33, Clamping 0.5+0.1 2.310.3
43, Clamping 0.2+0.2 2.810.4
69, Clamping 0.5+0.4 3.6+0.5

[1] Never-Seez, Never-Seez Compound Corp., Broadview, IL.
[2] See (Szilard 1974).
[3] Mean * one standard deviation.
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The clamping forces exerted by the O-ring and cap on the specimen resulted in stresses on the
specimen surface. The level and consistency of these stresses were measured by repeatedly
inserting and removing a strain-gaged specimen from the fixture. The stresses generated by
clamping varied with orientation and radial position. During three clampings, the principal
stresses averaged —4.9 + 1.0 and 0.9 + 1.0 MPa, respectively at the disk center, and 2.3 + 0.3 and
0.5 £ 0.1 MPa, respectively at 33% of the support radius. The maximum principal stresses
observed in the unlubricated condition were 5.5 and 1.3 MPa at the disk center. As the
specimens deflect and slide across the support ring during pressurization, these clamping
stresses may be relieved.

Thus, stresses generated by the test rig in a lubricated, isotropic plate can be described (Szilard
1974) by

2 2 2
o, = 3q135 (J—v)RS, +2(1+V)“(3+V)r7]+05
8t | R; R;
3qR?[ R’ r’
Cgp = gt; _(]—V)R—3+2(]+v)—(]+3V)R—SZ-]+G$ (135)
_qB+v)
: 4(]—v)

were g is the applied pressure, R, is the support ring radius, tis the disk thickness, R, is the disk
radius and r is the radius of interest. The term o, is a small correction factor to the simple plate
theory for the effects of the shearing stresses and lateral pressure on the plate deflection
(Timoshenko and Woinowsky-Krieger 1959).

4.5.2 The Anisotropic Case

To compare the test rig with the solutions of Okubu, single crystal NiAl disk test specimens were
machined with the face of the disk corresponding to the {100}. One specimen was strain gaged at
four locations and pressurized to 4.8 MPa in the rig with anti-seizing lubricant on the boundary.
The strain gage positions corresponded to ~50% of the support radius (i.e. r/r, = 0.5) with one
gage located along the <100> and the others along the stiffer <110> directions. The resulting
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stresses are shown in Figure 4.5.2.1 and summarized to Table 4.5.2.1. The stresses calculated
with the series solution are within 2% of the measured stresses at the plate center and within 6%
at approximately 50% of the support radius.

To further verify the test rig, nine disk test specimens were strain gaged and pressurized to
failure. The maximum strain at failure is compared to those calculated with Egs. (114), (115) and
(131) in Figure 4.5.2.2. The strains generated in the rig lie between those of the solutions, with
the approximate solution overestimating the average measured strains by ~5% and the series
solution underestimating the rig data by approximately 3%. However, neither the approximate or
series solutions consider the effect of lateral pressure and shear on the strains and stresses. If
the isotropic correction term, o, in Equation (135) is used with the Poisson’s ratio of

polycrystalline NiAl (v~ 0.31 (Noebe et al. 1993)) to approximate the error, an addition strain of

Table 4.5.2.1: Measured stresses, standard deviations and theoretical stresses for a 25 mm
diameter, {100} NiAl single crystal plate supported on a lubricated!" steel ring and subjected to a

4.8 MPa uniform pressure.

Radial Position Radial Stress, MPa Tangential Stress, MPa
Percent of Plate Percent Plate Percent
Support Radius | Theory” | Measured™ | Difference | Theory® | Measured® | Difference
and Angular MPa MPa MPa MPa
Position
2, center 305.7 300.1+1.0 -1.8 305.7 311.2+1.2 +1.8
44, <100 > 259.8 251.3+3.1 -3.3 272.2 264.4+1.7 -2.9
51, <110> 234.2 232.9+1.0 -5.6 2748 | 262.8+1.0 -4.4
50, <170> 2159 [ 223.7+1.0 +3.6 299.3 | 288.8+1.0 -3.6

[1] Never-Seez, Never-Seez Compound Corp., Broadview, IL.
[2] See (Okubu 1949).
[3] Mean + one standard deviation.
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ring was lubricated with anti-seizing compound. Error bars indicate
the 95% confidence intervals: (a) <100> direction and (b) <110>

direction.
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Figure 4.5.2.2: Measured strain at failure normalized to theoretical strain as
calculated from Okubu’s (Okubu 1949) approximate and exact

solutions.
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approximately 1.7% is expected, implying that the bending stress components generated by the
test rig closely approximate the series solution. However, the beneficial effect of the lateral strains

are mitigated by the effect of overhang.

Thus, considering the complexity of the series solution relative to the approximate solution, the

use of the approximate solution for practical engineering purposes is reasonable.

4.6 BIAXIAL STRENGTH TESTING

4.6.1 Isotropic Material

The biaxial strengths of ten WC test specimens were measured using the pressure-on-ring (POR)

test rig as discussed in Section 4.4. Table 4.6.1.1 summarizes the test specimen dimensions. The.

strength was calculated from the maximum value of Eq. (135):

8t?

SOk = ﬂ[(] —V)I;S; +2(1 +v)jl+65
d

where the symbols are as defined in Eq. (135).

Table 4.6.1.1: Test specimen dimensions for the isotropic case.

(136)

Specimen Configuration Mean'" Mean Width Support Span or
(number tested) Thickness or height or Radius Radius
mm mm mm
Three-point, “A” Beams (29) 1.50 £ 0.002 1.98 +£0.07 20.02
Biaxial, POR (10) 2.22 £ 0.004 25.40 +£ 0.005 22.74

[1] Mean + one standard deviation.
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4.6.2 Anisotropic Material

Thirteen NiAl disk test specimens with {100} orientation were pressurized to failure in the POR
test apparatus. Table 4.6.2.1 summarizes the test specimen dimensions. A nominal pressure rate
resulting in a strain rate corresponding to that used in the flexure testing was applied (10%/s). The
support ring was lubricated in order to minimize the effects of friction. For the approximated
solution, the strength was calculated from the maximum values of Eq. (116):

POR — qtr; (k*""’bif + ]) (1 37)
UTS , cubic 64D*Cubic Su + SJZ

where the symbols are as defined in Egs. (109) to (113).

Table 4.6.2.1: Test specimen dimensions for AFN12 single crystal NiAl specimens tested in
biaxial flexure.

Specimen Configuration Mean'" Mean Support
(number tested) Height or Thickness | Depth or Diameter Span or Diameter
mm mm mm
Biaxial, POR (13) 1.49 + 0.004 25.22+0.15 23.19

[1] Mean + one standard deviation
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CHAPTER 5: EXPERIMENTAL RESULTS: MATERIAL PROPERTIES
AND VERIFICATION TESTING

5.1 ELASTIC PROPERTIES

The elastic modulus of the WC was 607 + 3 GPa and Poisson’s ratio was 0.22.

A mean and standard deviation of 96.9 + 1.0 GPa was measured on the <100> and 187 +
2.7 GPa on the <110> orientation of the NiAl. These results are in good agreement with the
published values of 95.9 and 187.3 GPa (Wasilewski 1 966) and within 10% of the published
values of 86.0 and 205.0 GPa (Rusovic’ and Warlimont 1977), implying that the small percentage
of alloying elements has not substantially altered the elastic properties.

5.2 UNIAXIAL STRENGTH

5.2.1 Isotropic Material

Table 5.2.1.1 summarizes the measured uniaxial strength of the WC test specimens. The 90%
confidence intervals (Abernathy et al. 1983) are included. The maximum likelihood method was
used to calculate the Weibull parameters (Jakus et al. 1981 and Sonderman et al. 1985).

Table 5.2.1.1: Measured flexural strength statistics and 90% confidence intervals for WC.

Specimen Mean'" Characteristic 90% Weibull 90%
Configuration Strength Strength, o, Confidence | Modulus | Confidence
(number tested) MPa MPa Bands on ¢y m Bands on m
Three-point, “A” (29) 2910 + 223 3001 2950, 3053 19.0 14.9,24.2

[1] = one standard deviation.
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5.2.2 Anisotropic Material

Tables 5.2.2.1 and 5.2.2.2 summarize the measured uniaxial strength of the NiAl test specimens.
Detailed test results are given in Appendix C. The 90% confidence bands (Abernathy et al. 1983)
are included for the determination of the statistical significance of the observed differences in
measured strength. The mean strength and standard deviation of the specimens from each billet is
shown in Figures 5.2.2.1 and 5.2.2.2. Note that two of the <100> billets exhibit an average strength
somewhat significantly greater than the remaining billets. The resulting probabilities of failure as a
function of stress are shown in Figure 5.2.3 for <100> and <110> orientations. Censored Weibull
statistics were used to rank the data (Jakus et al. 1981) and the maximum likelihood estimator
(MLE) (Sonderman et al. 1985) was used to calculate the Weibull parameters. The characteristic
strength and mean strength as a function of orientation in the {100} plane are shown in Figures
5.223and5.2.24.

5.3 FRACTOGRAPHY OF THE FLEXURE SPECIMENS

'Scanning electron microscopy was performed to determine the source of test specimen fracture.
The results are summarized in Table 5.2.2.2. The <100> specimens fractured predominately
from inclusions protruding from the machined surface, Figure 5.3.1. However, the <110>
specimens failed from a mixture of inclusions and electro-discharge machining damage (EDM),
even though all the flexure specimens were prepared together in a like manner. Energy and
wavelength dispersive analyses® of the inclusions typically indicated large amounts of hafnium
(Hf) with smaller amounts of titanium (Ti) and carbon (C), implying complex carbides of the form
(HfTi)C. Occasionally a significant oxygen peak was obtained, implying the presence of both HfO
and (HfTi)C. However, because the dominant signal indicated Hf with the presence of C, the
inclusions will be referred to as HfC. Thus, as carbide are the inherent strength limiting
mechanism, lowering the Carbon content during processing should reduce the frequency and/or
size of HfC inclusions and thereby increase strength.

Note that the inclusions are three dimensional and bonded to the matrix and therefore probably
support significant tractions. Further, the thermal and elastic constants may be substantially
different from those of the NiAl matrix. Thus the flaws are not the ideal, classical concept of open
closed cracks.

> IMIX-PC Prism Digital Spectrometer, Princeton Gamma Physics, Princeton, NJ.
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Table 5.2.2.1: Flexural strength of AFN12 single crystal NiAl - normal statistics.

Orientation and Failure'” Number [ Mean Standard Deviation | Coefficient
Flexural Location of Tests | Strength of Strength of Variation
Configuration and Type MPa MPa
<100> 3-point S-HfC 15 1261 209 0.17
<100> 4-Point S-HiC 32 1010 202 0.20
<110> 3-Point S-HfC 9 767 177 0.23
<110> 4-Point S-HfC 15 629 130 0.21
<110> 3-Point S-EDM 3 466 69 0.15
<110> 4-Point S-EDM 19 340 107 0.31

[1] S = surface; EDM = electro-discharge machining scar. HfC = Hafnium carbide inclusion.

Table 5.2.2.2: Flexural strength of AFN12 single crystal NiAl - Weibull statistics.

Orientation and Failure™ | Characteristic 90% Weibull” 90%
Flexural Location Strength Confidence | Modulus | Confidence
Configuration and Type oy, MPa Bands for b-g m B<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>